2011

Shepherd University Wellness Center

Architectural Engineering Senior Thesis

Lighting | Electrical Dr. Kevin Houser and Ted Dannerth

> Lisha A Brown The Pennsylvania State University 4/7/2011

Shepherd University Wellness Center

Shepherdstown, West Virginia

Architecture

The multi-function university facility provides a balanced recreational program through three key elements: the fitness zone, a pool area, and a multi-function gymnasium. The building contains open spaces adjacent to a large rotunda that promotes circulation and openness.

Lighting

The majority of the general ambient light is provided by linear fluorescent recessed luminaires. Metal halide sources are used to illuminate the gymnasium and pool area. The rotunda incorporates linear fluorescent, metal halide, and xenon lamps to highlight the curved architectural features.

Electrical

Primary service is provided by Alleghany Power. The system is comprised of 2500A, 480Y/277V, 3 phase, 4 wire, and 60 Hertz. An emergency propane fired generator provides 75kW. The main switchboard is sized for 2500A.

Mechanical

The system consists of six rooftop units, two energy recovery rooftop units, and two pool dehumidification units. A variable air volume system allows for control of temperature zones.

Structural

Steel frame construction with lateral bracing. Floor system consists of two different types of composite decking, one shored and one unshored, both with a total thickness of six and a half inches. Decking is topped with normal weight concrete and welded wire fabric.

Statistics

Type | Academic Fitness and Education Center

Size | 73,400 square feet

Levels | Two

Cost | \$21.6 million

Completion | June 2009

Project Team

Owner | Shepherd University

Architect | Hughes Group Architects

MEP | Brinjac Engineering

Structural | Ehlert/Bryan Contractor | Palmer Construction Company

Lisha A Brown The Pennsylvania State University Department of Architectural Engineering Lighting/ Electrical Option

www.engr.psu/thesis/portfolios/2011/lab5097

Executive Summary

The Shepherd University Wellness Center allows for a balanced recreational program for the students, faculty, and staff of the University. Located in the center of Shepherd University's campus, the facility contains an eight-lane 25 yard swimming pool, two indoor gyms, an indoor elevated 1/10th mile jogging track, over 7,500 square foot weight and fitness area, two multi-purpose rooms, causal seating area, and administrative area.

The following report covers several topics regarding aesthetics, functionality, energy efficiency, and cost analysis. The lighting depth provides complete lighting re-designs for four spaces throughout the Wellness Center. Lighting design criteria, documentation, equipment, graphics, and performance data are provided for the Outdoor Entry, Rotunda, Multi-Purpose Room, and Fitness Room. The lighting designs for all spaces enhance the architecture and interior design while expressing excitement and movement throughout this exercise facility.

The existing electrical design was modified to meet the change in lighting design. Electrical depth topics include additional studies on equipment efficiency, cost, and functionality.

As part of the general goal to enhance the interior spaces and complete interdisciplinary studies in the design industry, an architectural breadth and an acoustical breadth aid in the redesign of the multi-purpose room.

The re-design solutions prove to be aesthetically pleasing, functional, and energy efficient. Each solution engages the users and emphasizes the Wellness Center's presence on campus.

Contents

Executive Summary3
Building Information and Statistics
Lighting Depth
Outdoor Entry Outdoor Space9
Description
Lighting Design Criteria and Considerations10
Lighting Solution12
Summary14
Rotunda Circulation Space
Description15
Lighting Design Criteria and Considerations20
Lighting Solution21
Summary
Multi-Purpose Room Special Purpose Space
Description
Lighting Design Criteria and Considerations33
Lighting Solution35
Summary
Fitness Room Large Work Space
Description
Lighting Design Criteria and Considerations42
Lighting Solution44
Summary49
Electrical Depth
Four Lighting Spaces
Description
Existing Panelboards
Luminaire Controls
Lighting Plans
Existing Panelboard Schedules

Branch Circuit Calculations	53
Panelboard Worksheets	54
Revised Panelboard Schedules	56
Dimming Wiring Diagrams	57
Feeders Re-sized	57
Electrical Equipment Cut Sheets	58
Short Circuit Analysis	58
Calculation	58
Overcurrent Protection Coordination Study	58
Trip Curves	59
Arc Fault Study	61
Photovoltaic Solar Roof Array	61
Description	61
Solution	61
Results	62
Generator vs. Distributed Batteries for Emergency Lighting	64
Description	64
Propane Generator	64
Distributed Batteries	64
Solution	66
Architectural Breadth	67
Description	67
Existing Conditions	67
Re-Design Solution	70
Summary	72
Acoustical Breadth	73
Description	73
Existing Conditions	73
Re-Design Evaluation	74
References	76
Acknowledgements	76

Appendix A	
Appendix B	
Appendix C	
Appendix D	

Building Information and Statistics

Building Name | Shepherd University Wellness Center

Location | Shepherdstown, West Virginia

Building Occupant | Shepherd University

Occupancy | Fitness and Education Center

Size | 73,400 Square Feet

Number of Stories | 2

Date of Construction | June 11, 2009

Construction Cost | \$21,600,000.00

Project Delivery Method | Single Lump-Sum Contract

Primary Project Team

Owner | Shepherd University

General Contractor | Palmer Construction Company in McConellsburg, PA

Architect | Hughes Group Architects in Sterling, VA

Structural Engineer | Ehlert/ Byan, Inc. in Mclean, VA

MEP and Fire Protection Engineer | Brinjac Engineers in Harrisburg, PA

Lighting Depth

The Shepherd University Wellness Center is located on Shepherd University's campus in Shepherdstown, West Virginia. The facility is over 70,000 square feet with two stories and was completed in June of 2009 with the cost of construction of about 21.6 million dollars. As a university fitness and educational center, the building serves as a multi-function facility that provides a balanced recreational program for the students, faculty, and staff of the University. The three key elements are the fitness zone, a pool area, and a multi-function gymnasium. The building contains open spaces adjacent to a large rotunda that promote circulation and openness. Also included in the building are a 25 yard pool, 2 basketball courts, an indoor jogging track, an over 7,500 square foot fitness area, dining venue, and administrative offices.

The four spaces that will be studied are the outdoor entry, as the outdoor space, the rotunda, as a circulation space, the multi-purpose room, as a special purpose space, and the fitness room, as a large work space. The outdoor entry relates the building to the University campus. The rotunda enhances the architecture of the building entrance. The multi-purpose room allows for flexibility of the use of light for each type of aerobic activity, while the fitness room uses light to distinguish sub spaces of different workout tasks.

The architect's vision was to have "three key elements provide a balanced recreation program: fitness zone, new pool, and a multi-function gymnasium" (Hughes Group Architects). The lighting design will mirror this image of balance through the concepts of movement, navigation, and safety. Movement will energize the users and stimulate their interest to workout. Navigation is imperative to directing the users to and through the spaces. The design will provide enough light for the users to use the space and its components safely.

Outdoor Entry | Outdoor Space

Description

This gathering exterior space serves as the focal point of the building, drawing visitors inside. The space connects the parking lot and exterior pathways to the vestibule entrance and the building's front façade. The space serves as circulation and egress. The space contains the stairs and pathway leading up to the main entrance, the brick façade, and a two-story glass storefront.

Dimension

Area= approximately 1970 sq. ft.

Materials

Table 1: Outdoor entry materials.

MATERIAL	OBJECT	COLOR	REFLECTANCE
Cement	Ground Covering	White	0.47
Asphalt	Ground Covering	N/A	0.26
Brick	Brick Wall		0.1

Note: For N/A colors, reflectance is designed for material specified.

Drawings

Figure 1: Existing plan of the outdoor entry.

Lighting Design Criteria and Considerations

IESNA Lighting Handbook 9th Edition

- Classification: Building Exterior, Entrance, Active (pedestrian/ conveyance)
- Appearance of Space and Luminaires: Very Important
 - Spatial appearance shall be aesthetically pleasing to create a comfortable space.
- Color Appearance and Color Contrast: Very Important
 - The lighting shall allow visitors to distinguish objects and people from the backdrop of the sky and building. The color appearance and contrast shall allow for easy identification for the safety of visitors.
- Direct Glare, Reflected Glare: Very Important
 - Direct glare shall be avoided to minimize discomfort and visibility interference to pedestrians and drivers in this outdoor space.
- Light Pollution/ Trespass: Very Important
 - Light pollution could affect the surrounding campus buildings. Illumination exceeding the boundaries of this outdoor space shall be minimal.
- Light Distribution on Surfaces, Modeling of Faces or Objects, Peripheral Detection: Very Important
 - Visitors must be able to recognize people and vehicles traveling throughout the space for their own safety. The lighting shall reveal the depth and shape of the objects throughout the space for easy identification.
- Points of Interest: Important
 - \circ $\;$ The main doors shall be the point of interest to lead visitors into the building.

- Shadows: Very Important
 - Shadows shall be minimal to create a safe space for visitors.
- Source/ Task/ Eye Geometry: Very Important
 - Safety is a main concern that will need to be addressed by the illuminated ground surface plane.
- Horizontal Illuminance: Very Important
 - 5 footcandles is recommended for simple orientation for short visits.
- Vertical Illuminance: Very Important
 - 3 footcandles is recommended for public spaces.

ASHRAE/IESNA Standard 90.1 2007

- Lighting Power Density Allowance for Building Exteriors
 - Building Grounds: Tradable Surfaces
 - Plaza areas: 0.2 W/ square feet

Architectural Lighting Design Third Edition by Gary Steffy

Psychological Aspect

• This space is designed for visual clarity to emphasize the walkways and entrance of the building.

Lighting Design Concept

The outdoor entry should be an inviting and safe space. The large two-story storefront serves as the building core and will illuminate the building from within. Additionally, step lighting will guide the users to the building, while path lighting will draw the users to the space.

Lighting Solution

Luminaire Schedule

Table 2: Outdoor entry luminaire schedule.

ТҮРЕ	IMAGE	MANUFACTURER/ CATALOG NUMBER	DESCRIPTION	MOUNTING	POWER SUPPLY	VOLTAGE	LAMP	WATTAGE
L06		Bega-US 2289P	Recessed wall luminaire, unshielded for steps, die- cast and extruded aluminum housing, 1/8" thick, clear tempered glass with translucent white ceramic coating	Recessed Wall	Integral Magnetic	120/277V	(1) F9BX/827/ ECO	9W

Light Loss Factors

IESNA Lighting Handbook 9th Edition

Table 3: Outdoor entry light loss factors.

Luminaire	Lamp Lumen	Luminaire Dirt	Ballast	Light Loss Factor
Type	Depreciation	Depreciation	Factor	Total
L06	0.83	0.88	0.98	0.72

Controls

The outdoor entry lighting will be controlled by an astronomical time switch. The digital time switch will automatically turn lights off after a preset time when the facility closes.

 Table 4: Outdoor entry controls.

Control Type	Product Name	Manufacturer	Catalog Number	Description	Location
TS	Digital Time Switch	WattStopper	TS-400	InteliSwitch TS-400 series digital time switches automatically turn lights off after a preset time	Rotunda 1 st level

Performance Graphics

Figure 2: Outdoor entry illuminance contour lines. Navy, red, and green lines represent 0.3, 0.6, and 1.0 footcandles respectively.

Energy Code Compliance

ASHRAE Standard 90.1

Table 5: Outdoor entry energy code compliance.

Area	Size	Power Density Allowable	Power Density Designed
Outdoor Entry	1973 sq. ft.	0.2 W/sq. ft.	0.132 W/ sq. ft.

Performance Summary

 Table 6: Outdoor entry performance summary.

Area	Average	Maximum	Minimum	Max/ Min
	Illuminance	Illuminance	Illuminance	Ratio
Outdoor Entry	0.54 fc	2.2 fc	0.3 fc	7.3

Summary

The outdoor entry defines the entrance to the Shepherd University Wellness Center. While the step and path lighting alone do not meet the average illuminance of 5 fc desired, the additional light provided by the core of the building spills onto the outdoor entry. Thus, the step, path, and core illumination adequately provide for safety of the users and direct users to the space. The Wellness Center makes its presence known with its inviting atmosphere through the use of outdoor lighting.

Rotunda | Circulation Space

Description

This two-story circular space provides views to outside the front of the building as well as to interior spaces, like the fitness room and gymnasium. The first level contains a casual seating area and front desk. On the second level, a circular walking path with a bisecting arc shaped walking path breaks up the openness of the space. The main purpose of the space is for circulation and egress.

Dimension

Approximately 70 ft. in diameter Ceiling height of first floor= 12.5 ft. Ceiling height of second level= 23.5 ft. Area= approximately 3,780 sq. ft.

Materials

Table 7: Rotunda materials.

MATERIAL	OBJECT	COLOR	REFLECTANCE
Paver Tile	Flooring	Titanium P523, Gunmetal P504	0.32
Plastic Laminate	Walls	Wild Cherry 7054-60	0.18
Wall Covering	Walls	Watermark Moire Wheat	0.34
Acoustical Ceiling Tile	Ceiling	N/A	0.78
Acoustical Wood	Ceiling	N/A	0.55
Laminated Glazing	Door	N/A	0.20

Note: For N/A colors, reflectance is designed for material specified.

Drawings

Figure 3: Floor plan of the first level rotunda.

Lisha A Brown

Figure 5: North elevation of the rotunda.

Figure 6: South elevation of the rotunda.

Lighting Design Criteria and Considerations

IESNA Lighting Handbook 9th Edition

- Classification: Educational Facility Corridor
- Daylighting Integration and Control: Very Important
 - Views of the outdoors through the large façade windows shall be utilized for psychological and physiological reasons, including to identify the time of day. Daylight and sunlight shall be utilized as ambient illumination.
- Direct Glare: Very Important
 - Direct glare shall be avoided to minimize discomfort and visibility interference in this circulation space.
- Light Distribution on Surfaces: Very Important
 - Illuminance patterns shall correspond with the circular architectural features of the walking path on the second level. The patterns of light shall take into consideration the tasks of visibility, comfort, and perception.
- Modeling of Faces or Objects: Very Important
 - The front desk must be able to recognize facility visitors. The lighting shall reveal the depth and shape of the objects throughout the space for easy identification of the designated flow of the space.
- Points of Interest: Very Important
 - The lighting shall draw attention to the front desk, as well as indicate the direction of pedestrian flow. Attention can be drawn using movement, luminance contrast, and color contrast.
- Vertical Illuminance: Very Important
 - For a working space where simple visual tasks are performed 10 footcandles are recommended.

ASHRAE/IESNA Standard 90.1 2007

- Lighting Power Density Allowance
 - Lobby
 - 1.3 W/ square feet

Architectural Lighting Design Third Edition by Gary Steffy

- Psychological Aspect
 - With the peripheral accent of the space and the use of daylight along the main entrance façade, this space creates an open atmosphere.

Lighting Design Concept

The grand interior entrance and architecture of the rotunda should be accentuated through the use of light. Light will invoke the impression of spaciousness by emphasizing the perimeter of the space. The users will be directed through the space by a pathway of light.

Lighting Solution

Luminaire Schedule

Table 8: Rotunda luminaire schedule.

ТҮРЕ	IMAGE	MANUFACTURER/ CATALOG NUMBER	DESCRIPTION	MOUNTING	POWER SUPPLY	VOLTAGE	LAMP	WATTAGE
L01		Zumtobel 2LS1D1H32GX24Q3	8" Square aperature, Specular aluminum reflector above lamp, Faceted specular plastic reflector with patterned wall wash section above clear glass enclosure	Recessed	Universal	120/277V	(1)CF32DT/ E/IN/ 841/ECO	32W
L04	T.	Elliptipar F204- H142-T-02-1-000	Small semi- recessed adjustable wall washer, Semi- gloss white finish, Two parabolic reflector sections	Semi- Recessed Adjustable	Integral Electronic	120V	(1) CFTR42W /GX24q, 3000K, 80 CRI	42W
L05	To I	Elliptipar M200- 035G-T-02-1-000	Small semi- recessed adjustable wall washer, Semi- gloss white finish, Two parabolic reflector sections	Semi- Recessed Adjustable	Integral Electronic	120V	(1)CDM35/T6/8 30	35W

Light Loss Factors

IESNA Lighting Handbook 9th Edition

Luminaire Type	Lamp Lumen Depreciation	Luminaire Dirt Depreciation	Ballast Factor	Room Surface Dirt Depreciation	Light Loss Factor Total
L01	0.85	0.88	0.98	0.92	0.67
L04	0.84	0.88	0.98	0.92	0.67
L05	0.76	0.88	0.98	0.92	0.60

Table 9: Rotunda light loss factors.

Controls

The rotunda lighting will be controlled by an astronomical time switch. The digital time switch will automatically turn lights off after a preset time when the facility closes.

Table 10: Rotunda controls.

Control Type	Product Name	Manufacturer	Catalog Number	Description	Location
TS	Digital Time Switch	WattStopper	TS-400	InteliSwitch TS-400 series digital time switches automatically turn lights off after a preset time	Rotunda 1 st level

Renderings

Figure 7: Rotunda 1st level rendering.

Figure 8: Rotunda 2nd level rendering.

Figure 9: Rotunda rendering of both levels.

Performance Graphics

Figure 10: Rotunda 1st level illuminance contour lines. Navy, red, and green lines represent 6, 8, and 12 footcandles respectively.

Figure 11: Rotunda 2nd level illuminance contour lines. Navy, red, and green lines represent 6, 8, and 12 footcandles respectively.

Figure 12: Rotunda 1st level illuminance pseudo color rendering in footcandles.

Energy Code Compliance

ASHRAE Standard 90.1

Table 11: Rotunda energy code compliance.

Area	Size	Power Density Allowable	Power Density Designed	
Rotunda	3780 sq. ft.	1.3 W/sq. ft.	1.256 W/ sq. ft.	

Performance Summary

 Table 12: Rotunda performance summary.

Area	Average Illuminance	Maximum Illuminance	Minimum Illuminance	Max/ Min Ratio
Rotunda 1 st level	7.98 fc	17 fc	2 fc	4.75
Rotunda 2 nd level	8.93 fc	19 fc	4 fc	4.75

Summary

The rotunda defines the grand interior entrance to the Shepherd University Wellness Center. Wall illumination adequately defines the boundaries through the use of wall washers. Small downlights guide the users through the curved space directing them to the facility's amenities. While the average illuminance does not meet the preferred 10 footcandles, the space reaches illuminance values above 10 footcandles at its perimeters where people need the light most. Daylight will provide additional light at times through the large two-story storefront; however, this space study does not take into account a daylighting analysis.

Multi-Purpose Room | Special Purpose Space

Description

Located on the second floor of the facility, the multi-purpose room is an open square for freedom of movement required by the aerobic and dance classes that take place here. Two large windows in the space overlook the building's large gym. This space does not contain furniture or any permanent layout. The room is equipped for dance, aerobic, and wellness classes.

Dimension

Approximately 40 ft. x 38 ft. Ceiling height= 14 ft. Area= approximately 4,300 sq. ft.

Materials

Table 13: Multi-purpose room materials.

FINISH	OBJECT	COLOR	REFLECTANCE
Wood Athletic Flooring	Floor	N/A	0.55
Glass	Window	N/A	0.50
Paint	Wall	Elmira White HC-84	0.70
Acoustical Ceiling Tile	Ceiling	White	0.78

Note: For N/A colors, reflectance is designed for material specified.

Drawings

Lighting Design Criteria and Considerations

IESNA Lighting Handbook 9th Edition

- Classification: Educational Facility, Gymnasium, Social Event
- Color Appearance and Color Contrast: Important
 - The use of warmer color temperatures will create a more pleasant feel to the aerobic environment. A higher Color Rendering Index, above 80, will improve the appearance of people and aerobic equipment. Good color renderings in the space will add visual interest and produce a welcoming environment.
- Direct and Reflected Glare: Important
 - Direct glare can increase the risk of injury of those participating in the aerobic classes, as well as cause discomfort for such participants. Indirect or inconspicuous lighting and luminaire placement out of the line of sight of participants is recommended.
- Modeling of Faces or Objects: Important
 - People's facial expressions are important to many forms of dance aerobics. The appearance of objects is important for proper aerobic equipment use.
- Shadows: Very Important
 - Shadows may cause risk of injury to the participants' visual limitation. The light shall be directed from several locations to minimize shadows.

- Sparkle/ Desirable Reflected Highlights: Very Important
 - High luminance on small specified points in the space will enhance the visual interest.
- System Control and Flexibility: Very Important
 - Switching and dimming can enhance the users' satisfaction within this large space, especially to accommodate the various types of aerobic and educational classes that will utilize the space.
- Horizontal Illuminance: Somewhat Important
 - 5 footcandles is recommended for orientation and simple visual tasks; however, for certain aerobic classes, such as kick-boxing, a higher illuminance value of at least 10 footcandles may be used.

ASHRAE/IESNA Standard 90.1 2007

- Lighting Power Density Allowance
 - Conference/ Meeting/ Multipurpose
 - 1.3 W/ square feet

Architectural Lighting Design Third Edition by Gary Steffy

- Psychological Aspect
 - The uniform overhead lighting coupled with the peripheral lighting along the wall with large windows allows for visual clarity. Since this room will be used for different forms of fitness activities, including aerobic dance and yoga, it should be designed for both festive and relaxation impressions.

Lighting Design Concept

As an open square for freedom of movement, the multi-purpose room should reflect the playfulness of the users. Rhythmic patterns of light with longer wavelengths will reinforce the high energy within. Reflected light will create sparkle throughout the space. Light as visual clutter creates an enchanting festive impression. For some activities, a relaxation impression will be used by providing uniform lighting along the peripheral areas of the space. Such activities include more subdued fitness activities, like yoga, and educational teaching lectures. Thus, two scenes are specified for the multi-purpose room.

Lighting Solution

Luminaire Schedule

Table 14: Multi-purpose luminaire schedule.

ΤΥΡΕ	IMAGE	MANUFACTURER/ CATALOG NUMBER	DESCRIPTION	MOUNTING	POWER SUPPLY	VOLTAGE	LAMP	WATTAGE
L01		Zumtobel 2LS1D1H32GX24Q3	8" Square aperature, Specular aluminum reflector above lamp, Faceted specular plastic reflector with patterned wall wash section above clear glass enclosure	Recessed	Universal	120/277V	(1)CF32DT/ E/IN/ 832/ECO	32W

Light Loss Factors

IESNA Lighting Handbook 9th Edition

Table 15: Multi-purpose light loss factors.

Luminaire	Lamp Lumen	Luminaire Dirt	Ballast	Room Surface	Light Loss Factor
Туре	Depreciation	Depreciation	Factor	Dirt Depreciation	Total
L01	0.85	0.88	0.98	0.92	0.67

Controls

Two line-voltage switches are located in this room to control the two lighting scenes: relaxation and festive. The first switch controls the perimeter downlights for the relaxation scene, while the second switch controls the remaining downlights for the festive scene.

Renderings

Figure 16: Multi-purpose room rendering.

Performance Graphics

Figure 17: Multi-purpose room illuminance contour lines. Navy, red, and green lines represent 12, 14, and 16 footcandles respectively.

Energy Code Compliance

ASHRAE Standard 90.1

Table 16: Multi-purpose energy code compliance.

Area	Size	Power Density Allowable	Power Density Designed
Multi-purpose	1512 sq. ft.	1.3 W/sq. ft.	0.938 W/ sq. ft.

Performance Summary

Table 17: Multi-purpose performance summary.

Area	Average	Maximum	Minimum	Max/ Min
	Illuminance	Illuminance	Illuminance	Ratio
Multi-purpose	14.61 fc	25.5 fc	9.2 fc	2.77

Summary

The controllable light allows this aerobic space to be playful. With an average illuminance of 14.61 footcandles, above the suggested 10 footcandles, this spaces is bright and lively for energetic movement. The festive impression is achieved through the random placement of light by small angled downlights. Light bounces off of the suspended ceiling metal panels to create sparkle throughout the space and on the users as they move. The relaxation impression is achieved by controlling the light to a lower light level and using uniform lighting that emphasizes the peripheral space.

Fitness Room | Large Work Space

Description

Located on the second floor of the facility, the fitness room is viewed as a "rotunda balcony" (Hughes Group Architects). The space provides views of the building amenities and outside onto the campus. This weight and fitness area consists of free weights, resistance machines, and cardio equipment. The space also contains nine flat screen televisions.

Dimension

Approximately 155 ft. x 28 ft. Ceiling height= 14 ft. Area= approximately 4,300 sq. ft.

Materials

Table 18: Fitness room materials.

FINISH	FINISH OBJECT		REFLECTANCE
Glass	Windows	Diffuse	0.40
Athletic Flooring	Floor	Grey G707	0.23
Paint	Walls	Elmira White HC-84	0.70
Acoustical Ceiling Tile	Ceiling	Yellow Cream	0.78

Drawings

Figure 20: Architectural sketch of the fitness room.

Lighting Design Criteria and Considerations

IESNA Lighting Handbook 9th Edition

- Classification: Sports and Recreational Area Lighting; Class IV
- Direct Glare
 - Direct glare from light sources and luminaires must be prevented to avoid improper use of machinery.
- Light Distribution on Task Plane (Uniformity)
 - The task plane is the level at which the free weights, resistance machines, and cardio equipment rests. Uniform light distribution at proper illuminance levels will be important to mitigate risk of injury.
- Illuminance
 - General uniform and diffuse lighting of an average of 30 footcandles at the task plane.

ASHRAE/IESNA Standard 90.1 2007

- Lighting Power Density Allowance
 - o Gymnasium/ Exercise Center

• Exercise Area: 0.9 W/ square feet

Architectural Lighting Design Third Edition by Gary Steffy

- Psychological Aspect
 - The overhead lighting along the ceiling is more central with some peripheral lighting to reinforce the work space's visual clarity.

Lighting Design Concept

The design complements the architecture of the space and encourages the theme of movement. The lighting design for the fitness area provides for safety and visual clarity. The long narrow area is defined by spaces within through the use of three light levels: ambient, architectural, and task. Strips of light between the columns define the spaces within the fitness area and provide ambient light with linear recessed fluorescent luminaires. Adjustable downlights highlight the columns and define the architecture in the space. Task lighting draws attention to the reception desk for the fitness zone.

Lighting Solution

Luminaire Schedule

Table 19: Fitness room luminaire schedule.

ΤΥΡΕ	IMAGE	MANUFACTURER/ CATALOG NUMBER	DESCRIPTION	MOUNTING	POWER SUPPLY	VOLTAGE	LAMP	WATTAGE
L01		Zumtobel 2LS1D1H32GX24Q3	8" Square aperature, Specular aluminum reflector above lamp, Faceted specular plastic reflector with patterned wall wash section above clear glass enclosure	Recessed	Universal	120/277V	(1)CF32DT/ E/IN/ 841/ECO	32W
L02		Zumtobel PL-OLP-65-1805-U	Plateau, 6" recessed, Opal lens, 6" x 5', Narrow aperature recessed direct lensed luminaire for continuous row mounting	Recessed	Universal	120/277V	(1) 80W (5') T5HO 85 CRI, 4100K	80W
L03		Alfa P208- TOM-TOM	Drum Pendants, glass shade, 78" long cord, 12V 5W LED light engine with diffusing cover	Suspended	Electronic Transformer	12V	LED 80 CRI, 300K 50,000 hour life to 70% of light output	5W

Light Loss Factors

IESNA Lighting Handbook 9th Edition

Luminaire Type	Lamp Lumen Depreciation	Luminaire Dirt Depreciation	Ballast Factor	Room Surface Dirt Depreciation	Light Loss Factor Total
L01	0.85	0.88	0.98	0.92	0.67
L02	0.92	0.88	0.88	0.92	0.66
L03	0.88	0.88		0.92	0.71

Table 20: Fitness room light loss factors.

Controls

Three line-voltage switches are located in this room to control the three levels of light: ambient, accent, and task. The first switch controls the linear downlights for the ambient light level, the second switch controls the adjustable downlights that accent the architectural columns, and the third switch controls the pendants suspended above the reception desk for task lighting.

Renderings

Figure 21: Fitness room rendering.

Performance Graphics

respectively.
· · · · · · · · · · · · · · · · · · ·
u angeneran and and and and and and and and and a
Of the second se
and an all and a second a second as a second
and an all and and an and an and
as for as for as a for as for an for me
and a set of
O Land and a star
and the second second second second second
and and and and an an an an an and an and an
as all makes as
us at an an as as as an as an as a second as
and the second s
and the second s
ar and and and an ar ar ar ar ar ar
and the local data and and the second data and a second data and a second data and a second data and a second d
an and a second as
an a
O Terretter
an apartant at an an ar frankatur.
an a state of the second se
• • • • • • • • • • • • • • • • • • •
- 2.0
D for the second second second
The of a contract of a sector of
franking and an an and and and
ا ماند به به به به به به به به به ال
4
alar an alar as as as for a set
+ + + + + + + + + + + + + + + + + +

Figure 22: Fitness room illuminance contour lines. Navy, red, and green lines represent 20, 30, and 40 footcandles respectively.

Energy Code Compliance

ASHRAE Standard 90.1

Table 21: Fitness room energy code compliance.

Area	Size	Power Density Allowable	Power Density Designed
Exercise	4278 sq. ft.	0.90 W/sq. ft.	0.88 W/ sq. ft.

Performance Summary

 Table 22: Fitness room performance summary.

Area	Average	Maximum	Minimum	Max/ Min
	Illuminance	Illuminance	Illuminance	Ratio
Exercise	31.7 fc	46.9 fc	5.3 fc	8.85

Summary

The lighting design adequately provides the desired 30 footcandle average illuminance. The light clearly defines the space within and breaks up the long narrow area through the use of three light levels: ambient, accent, and task. The strips of light produce uniform light levels across the equipment task plane allowing for user safety of the machinery. The adjustable downlights highlight the columns to accent the architecture. Pendants effectively light the reception desk for secretarial tasks. The overall lighting solution complements the space by directing movement within the fitness room.

Electrical Depth

The Shepherd University Wellness Center has a simple radial electrical system that enters the building through one service entrance point located in the building's main electrical room. The main transformer, which is provided by the contractor, has a secondary voltage of 480Y/277V, 3Ph, 4W. The 2500A main distribution panel supplies power to subsequent feeders and panels. Emergency power is provided by a 75kW propane fired generator. The existing electrical design is modified to meet the change in lighting design. Through the re-design of the panelboards and feeders, the equipment will be sized appropriately to minimize cost and maximize efficiency.

Four Lighting Spaces

Description

The four spaces to be re-designed are the outdoor entry (exterior), rotunda, multi-purpose room, and fitness room. The outdoor entry exterior space serves as the focal point of the building, drawing visitors inside. The two-story circular rotunda provides views to outside the front of the building as well as to interior spaces, like the fitness room and gymnasium. The first level contains a casual seating area and front desk. On the second level, a circular walking path is bisected by an arc-shaped track. The outdoor entry and rotunda are both circulation and egress spaces. The multi-purpose room is an open square space used for aerobic and dance classes. This space does not contain furniture or any permanent layout. The room is equipped for dance, aerobic, and wellness classes. The fitness room is also located on the second floor. This space provides views of the building amenities and outside onto the campus. This weight and fitness area is about 4,300 square feet and consists of free weights, resistance machines, and cardio equipment. The lighting re-design complements the architecture of the space and encourages the theme of movement. The lighting provides for safety and visual clarity. Throughout all four spaces, the lighting creates a hierarchy of light from ambient to architectural to task.

Existing Panelboards

PANEL TAG	VOLTAGE	SYSTEM	EXTERIOR	ROTUNDA	MULTI-PURPOSE	FITNESS
HP1	480Y/277V, 3PH, 4W	N		Х	Х	Х
EHP1	480Y/120V, 3PH, 4W	E	Х	Х		

Table 23: Existing panelboard information for four lighting spaces.

Luminaire Controls

The outdoor entry and rotunda lighting will each be controlled by their own astronomical time switch. Both digital time switches will automatically turn lights off after a preset time when the facility closes.

Control Type	Product Name	Manufacturer	Catalog Number	Description	Location
TS	Digital Time Switch	WattStopper	TS-400	InteliSwitch TS-400 series digital time switches automatically turn lights off after a preset time	Rotunda 1 st level

 Table 24: Outdoor entry and rotunda luminaire control information.

Two line-voltage switches are located in this multi-purpose room to control the two lighting scenes: relaxation and festive. The first switch controls the perimeter downlights for the relaxation scene, while the second switch controls the remaining downlights for the festive scene.

Three line-voltage switches are located in this fitness room to control the three levels of light: ambient, accent, and task. The first switch controls the linear downlights for the ambient light level, the second switch controls the adjustable downlights that accent the architectural columns, and the third switch controls the pendants suspended above the reception desk for task lighting.

Lighting Plans

Lighting plans for the four re-lighted spaces can be found in Appendix A.

Existing Panelboard Schedules

Figure 24: Existing normal lighting/ power panelboard, panel tag HP1.

PANELBOARD SCHEDULE												
VOLTAGE: SIZE/TYPE BUS:	480Y/277V,3PH 225A	H,4W	PAN	PANEL T	AG: DN:	HP [.] ELE	1 ECTI	RICAL 127		MIN. C/B AIC: OPTIONS:	Х	
SIZE/TYPE MAIN:	225A/3P C/B		PAN	EL MOUNTI	NG:	SU	RFA	CE				
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	А	в	С	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
LIGHTS	ROTUNDA	2100	20A/1P	1	*			2	20A/1P	3800	MULTIPURPOSE	LIGHTS
LIGHTS	CORRIDOR	1200	20A/1P	3		*		4	20A/1P	1500	ROTUNDA	LIGHTS
LIGHTS	OFFICE	3900	20A/1P	5			*	6	20A/1P	4300	ROTUNDA	LIGHTS
LIGHTS	OFFICE	3500	20A/1P	7	*			8	20A/1P	1300	CORRIDOR	LIGHTS
LIGHTS	RM 128,130	800	20A/1P	9		*		10	20A/1P	1400	ECH./GYM STO	LIGHTS
LIGHTS	CABANA	400	20A/1P	11			*	12	20A/1P	1600	POOL	LIGHTS
LIGHTS	GYM	1900	20A/1P	13	*			14	20A/1P	3200	POOL	LIGHTS
LIGHTS	GYM	3500	20A/1P	15		*		16	20A/1P	3200	POOL	LIGHTS
LIGHTS	GYM	3500	20A/1P	17			*	18	20A/1P	2900	FITNESS	LIGHTS
LIGHTS	GYM	2700	20A/1P	19	*			20	20A/1P	3900	FITNESS	LIGHTS
LIGHTS	ROOF	500	20A/1P	21		*		22	20A/1P	1100	114	LIGHTS
LIGHTS	CORR./SERV.	1600	20A/1P	23			*	24	20A/1P	2400	MURALS	LIGHTS
LIGHTS	LOCKER	2800	20A/1P	25	*			26	20A/1P	1600	GYM	LIGHTS
LIGHTS	RAQUETBALL	2000	20A/1P	27		*		28	20A/1P	2900	GYM	LIGHTS
DRYER		3700	20A/1P	29			*	30	20A/1P	2900		SPARE
		10500	20A/1P	31	*			32	20A/1P	0		SPARE
		10500	20A/1P	33		*		34	20A/1P	0		SPARE
		10500	20A/1P	35			*	36	20A/1P	0		SPACE-PFFB
SPACE-PFFB		0	20A/1P	37	*			38	20A/1P	0		
		0	20A/1P	39		*		40	20A/1P	0		
		0	20A/1P	41			*	42	20A/1P	0		
CONNECTED LOAD	D (KW) - A Ph.	37.30								TOTAL DESIGN	LOAD (KW)	124.32
CONNECTED LOAD	D (KW) - B Ph.	28.60								POWER FACTO	OR	0.80
CONNECTED LOAD	D (KW) - C Ph.	37.70								TOTAL DESIGN	LOAD (AMPS)	187

Figure 25: Existing life safety branch emergency panelboard, panel tag EHP1.

PANELBOARD SCHEDULE												
VOLTAGE:	480Y/277V,3PH	H,4W	DAN		AG:	EH	P1			MIN. C/B AIC: X		
SIZE/TYPE BOS:	100A/3P C/B		PAN	EL MOUNTI	NG:	SU	RFA	ICE		OPTIONS:		
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	А	В	С	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
LIGHTS	STEPS	500	20A/1P	1	*			2	20A/1P	2400	ROTUNDA	LIGHTS
LIGHTS	ROTUNDA	800	20A/1P	3		*		4	20A/1P	600	CORR. 212	LIGHTS
LIGHTS	CORR. 103	1100	20A/1P	5			*	6	20A/1P	2400	POOL	LIGHTS
LIGHTS	CORR. 131	1600	20A/1P	7	*			8	20A/1P	2400	POOL	LIGHTS
LIGHTS	IR RMS/CABAN	1300	20A/1P	9		*		10	20A/1P	3200	NESS,MEN,WON	LIGHTS
LIGHTS	EXTERIOR	500	20A/1P	11			*	12	20A/1P	2700	GYM	LIGHTS
SPARE	0	0	20A/1P	13	*			14	20A/1P	900	POOL FILTER	LIGHTS
SPARE	0	0	20A/1P	15		*		16	20A/1P	500	ELECT 152	LIGHTS
SPARE	0	0	20A/1P	17			*	18	20A/1P	800	MULTIPURPOSE	LIGHTS
SPARE	0	0	20A/1P	19	*			20	20A/1P	0	0	SPARE
SPARE	0	0	20A/1P	21		*		22	20A/1P	0	0	SPARE
SPARE	0	0	20A/1P	23			*	24	20A/1P	0	0	SPARE
	0	0	20A/1P	25	*			26	20A/1P	0	0	
	0	0	20A/1P	27		*		28	20A/1P	0	0	
		0	20A/1P	29			*	30	20A/1P	0		
0		0	20A/1P	31	*			32	20A/1P	0		0
0		0	20A/1P	33		*		34	20A/1P	0		0
0		0	20A/1P	35			*	36	20A/1P	0		SPACE-PFFB
SPACE-PFFB		0	20A/1P	37	*	4		38	20A/1P	0		0
0		0	20A/1P	39		*		40	20A/1P	0		0
0		0	20A/1P	41			Ŷ	42	20A/1P	0		0
CONNECTED LOA	D (KW) - A Ph.	7.80								TOTAL DESIGN	I LOAD (KW)	26.04
CONNECTED LOA	D (KW) - B Ph.	6.40								POWER FACTO	OR	0.80
CONNECTED LOA	D (KW) - C Ph.	7.50								TOTAL DESIGN	LOAD (AMPS)	39

٦

Branch Circuit Calculations

Table 25:	Branch circuit	calculations for	panelboard HP1.

	Denalheard UD1 Circuit Calculations									
	Fanelboard HFT Circuit Calcuidtions									
Circuit 1										
Туре	Quantity	W/ Luminaire	Total W	PF	Total VA					
L01	18	32	576	0.98	587.76					
		Circuit	2							
Туре	Quantity	W/ Luminaire	Total W	PF	Total VA					
L01	43	32	1376	0.98	1404.08					
		Circuit	4							
Туре	Quantity	W/ Luminaire	Total W	PF	Total VA					
L04	33	42	1386	0.98	1414.29					
		Circuit	6							
Туре	Quantity	W/ Luminaire	Total W	PF	Total VA					
L05	33	35	1155	0.98	1178.57					
		Circuit	18							
Туре	Quantity	W/ Luminaire	Total W	PF	Total VA					
L02	42	80	3360	0.88	3818.18					
	Circuit 20									
Туре	Quantity	W/ Luminaire	Total W	PF	Total VA					
L01	12	32	384	0.98	391.84					
L03	4	5	20	1.00	20.00					
		Total	404	0.99	411.84					

Table	26:	Branch	circuit	calculations	for	panelboard	EHP1.
		Dianen	en eure	carcalacionio		partenooura	

	Panelboard EHP1 Circuit Calculations									
	Circuit 2									
Туре	Quantity	W/ Luminaire	Total W	PF	Total VA					
L01	3	32	96	0.98	97.96					
	Circuit 3									
Туре	Quantity	W/ Luminaire	Total W	PF	Total VA					
L01	3	32	96	0.98	97.96					
		Circuit	11							
Type Quantity W/ Luminaire Total W PF Total VA										
L06	20	9	180	0.98	183.67					

Panelboard Worksheets

Figu	igure 26: Panelboard sizing worksheet for panel tag HP1.										
				PANELBOAR		G WO	RKS	IEET			
		Panel Tag		>	HP1	Pa	anelloc	ation.	ELE		127
	No	minal Phase to I	Neutr	al Voltage>	277		Phase	2. 2.	3		
	Nor	ninal Phase to F	hase	e Voltage>	480		Wires	5:	4		
Pos	Ph	Load Type	Cat	Location	Load	Units	I PF	Watts	VA	Rer	narks
1	A	LIGHTS	1	ROTUNDA	576	W	0.98	576	588	1101	Indino
2	A	LIGHTS	1	MULTIPURPOSE	1376	w	0.98	1376	1404		
3	В	LIGHTS	1	CORRIDOR	1200	w		1200	1500		
4	В	LIGHTS	1	ROTUNDA	1386	w	0.98	1386	1414		
5	С	LIGHTS	1	OFFICE	3900	w		3900	4875		
6	С	LIGHTS	1	ROTUNDA	1155	W	0.98	1155	1179		
7	Α	LIGHTS	1	OFFICE	3500	w		3500	4375		
8	Α	LIGHTS	1	CORRIDOR	1300	W		1300	1625		
9	В	LIGHTS	1	RM 128,130	800	w		800	1000		
10	В	LIGHTS	1	MECH./GYM STOR.	1400	W		1400	1750		
11	С	LIGHTS	1	CABANA	400	w		400	500		
12	С	LIGHTS	1	POOL	1600	w		1600	2000		
13	A	LIGHTS	1	GYM	1900	W		1900	2375		
14	A	LIGHTS	1	POOL	3200	W		3200	4000		
15	В	LIGHTS	1	GYM	3500	W		3500	4375		
10	В	LIGHTS	1	POOL	3200	W		3200	4000		
10			1	EITNESS	3500	W	0.00	3500	4375		
10	^		1	CVM	2700	VV	0.00	2700	2275		
20	Δ	LIGHTS	1	FITNESS	404	W/	0 99	404	408		
21	B	LIGHTS	1	ROOF	500	W	0.00	500	625		
22	В	LIGHTS	1	114	1100	w		1100	1375		
23	С	LIGHTS	1	CORR./SERV.	1600	w		1600	2000		
24	С	LIGHTS	1	MURALS	2400	w		2400	3000		
25	Α	LIGHTS	1	LOCKER	2800	w		2800	3500		
26	А	LIGHTS	1	GYM	1600	w		1600	2000		
27	В	LIGHTS	1	RAQUETBALL	2000	W		2000	2500		
28	В	LIGHTS	1	GYM	2900	W		2900	3625		
29	C	DRYER	9		3700	W		3700	4625		
30		SPARE	2		2900	w		2900	3020		
32	Δ	SPARE	2		0	W		0	0		
33	В		3		10500	w		10500	13125		
34	В	SPARE	2		0	w		0	0		
35	С		3		10500	W		10500	13125		
36	С	SPACE-PFFB	3		0	w		0	0		
37	А	SPACE-PFFB	3		0	w		0	0		
38	А		3		0	W		0	0		
39	В		3		0	W		0	0		
40	В		3		0	W		0	0		
41			3		0	W		0	0		
			3		0	vv		02.4	115.2	Amno-	120.6
FAN	«∟∟ I							9 0.4	113.2	niips=	130.0
PHA	SE I	LOADING						kW	kVA	%	Amps
<u> </u>	PHA	SE TOTAL	A					29.9	36.8	32%	132.8
	PHA	SE TOTAL	В					28.5	35.3	31%	127.4
	РНА	SEIUTAL	U			1		35.0	43.1	31%	155.7
LOA	D C	ATAGORIES		Connected			Der	mand			Ver. 1.04
		1.1.2		kW	kVA	DF	kW	kVA	PF		
1		lighting		55.3	67.6	0.60	33.2	40.5	0.82		
2		spare		2.9	3.0	0.60	10.0	2.2	0.80		
3		space		31.5	39.4	0.60	10.9	23.0	0.80	├	
4				0.0	0.0		0.0	0.0			
6	0.0		0.0		0.0	0.0					
7			1	0.0	0.0		0.0	0.0			
8				0.0	0.0		0.0	0.0			
9	9 unassigned 3.7		4.6	0.60	2.2	2.8	0.80				
Тс	tal D	emand Loads					56.0	69.1			
	Spa	re Capacity		20%			11.2	13.8			
— Т/	otal [Design Loads	1			1	67.2	82.9	0.81	Amps=	99.8

Figu											
	D		F P						EU		107
N	Pa Iomin	al Phase to Neutral	l Volta	>	277	Pa	Phase	auon. ≏	3		L 127
N	omin	al Phase to Phase	Volta	ge>	480		Wires	6: 6:	4		
Pos	Ph.	Load Type	Cat.	Location	Load	Units	I. PF	Watts	VA	Rer	narks
1	Α	LIGHTS	1	STEPS	500	W		500	625		
2	A	LIGHTS	1	ROTUNDA	96	W	0.98	96	98		
3	В		1	COPP 212	96	W	0.98	96	98		
4	D C		1	CORR 103	1100	W		1100	1375		
6	C	LIGHTS	1	POOL	2400	w		2400	3000		
7	Α	LIGHTS	1	CORR. 131	1600	W		1600	2000		
8	Α	LIGHTS	1	POOL	2400	W		2400	3000		
9	В	LIGHTS	1	R RMS/CAB/	1300	W		1300	1625		
10	В		1	SS,MEN,WO	3200	W	0.02	3200	4000		
12	C	LIGHTS	1	GYM	2700	W	0.98	2700	3375		
13	A	SPARE	2	OTM	0	w		0	0		
14	A	LIGHTS	1	OOL FILTE	900	W		900	1125		
15	В	SPARE	2		0	W		0	0		
16	В	LIGHTS	1	ELECT 152	500	W		500	625		
17	C	SPARE	2		0	W		0	0		
18	C		1	ILTIPURPO	008	W		800	1000		
20	A	SPARE	2		0	w		0	0		
21	В	SPARE	2		0	w		0	0		
22	В	SPARE	2		0	W		0	0		
23	С	SPARE	2		0	W		0	0		
24	С	SPARE	2		0	W		0	0		
25	A	SPACE-PFFB	3		0	W		0	0		
26	A	SPACE-PFFB	3		0	W		0	0		
27	B		9		0	w		0	0		
29	C		9		0	w		0	0		
30	С		9		0	W		0	0		
31	Α		9		0	w		0	0		
32	A		9		0	W		0	0		
33	В		9		0	W		0	0		
34			9		0	W		0	0		
36	c		9		0	w		0	0		
37	A		9		0	W		0	0		
38	Α		9		0	W		0	0		
39	В		9		0	w		0	0		
40	B		9		0	W		0	0		
41	C		9		0	W		0	0		
42 PΔN			9		0	vv		18.4	22.9	Amns-	27.5
			1					10.7		<u>, anpo-</u>	21.0
PHA	<u>ISE I</u>		^					kW	kVA	%	Amps
-		ASE TOTAL	R					5.5 5.7	0.ð 7 1	30% 31%	24.7
-	PF	ASE TOTAL	C					7.2	8.9	39%	32.3
				Conne	otod		Day		0.0	0070	02.0
LOF		ATAGORIES		kW		DF	kW		PF		Ver. 1.04
1		LIGHTS		18.4	22.9	0.60	11.0	13.7	0.80		
2		SPARE		0.0	0.0	0.60	0.0	0.0			
3		SPACE		0.0	0.0	0.60	0.0	0.0			
4			<u> </u>	0.0	0.0		0.0	0.0			
5			<u> </u>	0.0	0.0		0.0	0.0			
6				0.0	0.0		0.0	0.0			
8				0.0	0.0		0.0	0.0			
9		unassigned		0.0	0.0		0.0	0.0	-		
<u> </u>	Total	Demand Loads	1		0.0		11.0	13.7			
	Sp	are Capacity		20%			2.2	2.7			
	Tota	l Design Loads					13.2	16.5	0.80	Amps=	19.8

Figure 27: Panelboard sizing worksheet for panel tag EHP1.

٦

Revised Panelboard Schedules

Figure 28: Revised normal lighting/ power panelboard, panel tag HP1.

	PANELBOARD SCHEDULE											
VOLTAGE: 480Y/277V,3PH,4W PANEL TAG: HP1								MIN. C/B AIC:				
SIZE/TYPE BOS. 100A PANEL DOCATION: ELECTRICAL 127 SIZE/TYPE MAIN: 100A/3P C/B PANEL MOUNTING: SURFACE							OF HONS.					
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	А	В	С	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
LIGHTS	ROTUNDA	576	20A/1P	1	*			2	20A/1P	1376	MULTIPURPOSE	LIGHTS
LIGHTS	CORRIDOR	1200	20A/1P	3		*		4	20A/1P	1386	ROTUNDA	LIGHTS
LIGHTS	OFFICE	3900	20A/1P	5			*	6	20A/1P	1155	ROTUNDA	LIGHTS
LIGHTS	OFFICE	3500	20A/1P	7	*			8	20A/1P	1300	CORRIDOR	LIGHTS
LIGHTS	RM 128,130	800	20A/1P	9		*		10	20A/1P	1400	ECH./GYM STO	LIGHTS
LIGHTS	CABANA	400	20A/1P	11			*	12	20A/1P	1600	POOL	LIGHTS
LIGHTS	GYM	1900	20A/1P	13	*			14	20A/1P	3200	POOL	LIGHTS
LIGHTS	GYM	3500	20A/1P	15		*		16	20A/1P	3200	POOL	LIGHTS
LIGHTS	GYM	3500	20A/1P	17			*	18	20A/1P	3360	FITNESS	LIGHTS
LIGHTS	GYM	2700	20A/1P	19	*			20	20A/1P	404	FITNESS	LIGHTS
LIGHTS	ROOF	500	20A/1P	21		*		22	20A/1P	1100	114	LIGHTS
LIGHTS	CORR./SERV.	1600	20A/1P	23			*	24	20A/1P	2400	MURALS	LIGHTS
LIGHTS	LOCKER	2800	20A/1P	25	*			26	20A/1P	1600	GYM	LIGHTS
LIGHTS	RAQUETBALL	2000	20A/1P	27		*		28	20A/1P	2900	GYM	LIGHTS
DRYER		3700	20A/1P	29			*	30	20A/1P	2900		SPARE
		10500	20A/1P	31	*			32	20A/1P	0		SPARE
		10500	20A/1P	33		*		34	20A/1P	0		SPARE
		10500	20A/1P	35				36	20A/1P	0		SPACE-PFFB
SPACE-PFFB		0	20A/1P	37	*	*		38	20A/1P	0		
		0	20A/1P	39		-	*	40	20A/1P	0		
		0	20A/1P	41				42	20A/1P	0		
CONNECTED LOAI	29.86							TOTAL DESIGN	LOAD (KW)	67.22		
CONNECTED LOAI	28.49							POWER FACTOR 0.81				
CONNECTED LOAI	D (KW) - C Ph.	35.02								TOTAL DESIGN	LOAD (AMPS)	100

Figure 29: Revised life safety branch emergency panelboard, panel tag EHP1.

	PANELBOARD SCHEDULE											
VOLTAGE:	480Y/277V.3Pt	H.4W		PANEL T	AG:	EH	P1			MIN. C/B AIC:	X	
SIZE/TYPE BUS:	100A		PAN		ON:	ELE	ст	RICAL 127		OPTIONS:		
SIZE/TYPE MAIN: 100A/3P C/B PANEL MOUNTING: SURFACE												
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	А	В	С	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
LIGHTS	STEPS	500	20A/1P	1	*			2	20A/1P	96	ROTUNDA	LIGHTS
LIGHTS	ROTUNDA	96	20A/1P	3		*		4	20A/1P	600	CORR. 212	LIGHTS
LIGHTS	CORR. 103	1100	20A/1P	5			*	6	20A/1P	2400	POOL	LIGHTS
LIGHTS	CORR. 131	1600	20A/1P	7	*			8	20A/1P	2400	POOL	LIGHTS
LIGHTS	R RMS/CABAN	1300	20A/1P	9		*		10	20A/1P	3200	ESS,MEN,WON	LIGHTS
LIGHTS	EXTERIOR	180	20A/1P	11			*	12	20A/1P	2700	GYM	LIGHTS
SPARE	0	0	20A/1P	13	*			14	20A/1P	900	POOL FILTER	LIGHTS
SPARE	0	0	20A/1P	15		*		16	20A/1P	500	ELECT 152	LIGHTS
SPARE	0	0	20A/1P	17			*	18	20A/1P	800	MULTIPURPOSE	LIGHTS
SPARE	0	0	20A/1P	19	*			20	20A/1P	0	0	SPARE
SPARE	0	0	20A/1P	21		*		22	20A/1P	0	0	SPARE
SPARE	0	0	20A/1P	23			*	24	20A/1P	0	0	SPARE
	0	0	20A/1P	25	*			26	20A/1P	0	0	
	0	0	20A/1P	27		*		28	20A/1P	0	0	
		0	20A/1P	29			*	30	20A/1P	0		
0		0	20A/1P	31	*			32	20A/1P	0		0
0		0	20A/1P	33		*		34	20A/1P	0		0
0		0	20A/1P	35			*	36	20A/1P	0		SPACE-PFFB
SPACE-PFFB		0	20A/1P	37	*			38	20A/1P	0		0
0		0	20A/1P	39		*		40	20A/1P	0		0
0		0	20A/1P	41			*	42	20A/1P	0		0
CONNECTED LOAI	5.50							TOTAL DESIGN	I LOAD (KW)	13.23		
CONNECTED LOAI	D (KW) - B Ph.	5.70							POWER FACTO	DR	0.80	
CONNECTED LOAI	D (KW) - C Ph.	7.18								TOTAL DESIGN	LOAD (AMPS)	20

— Page 56 -

Dimming Wiring Diagrams

No dimming controls were specified for this project.

Feeders Re-sized

Each panelboard re-design includes a resizing of the main circuit protection and feeder. Feeder sizing is based on copper wire, 75 degree C, THWN and IMC conduit. The building wiring is assumed to be 100 percent neutral due to the use of fluorescent and HID lighting.

Note: Panelboard EHP1 has a calculated load of less than 40 Amps. According to the NEC, this panelboard breaker has to protect the feeder. Therefore, this panelboard will be sized based off of a 100A panelboard and will take into account extra spare loads.

Feeder Sizing Worksheet									
Panelboard									
Тад	HP1	EHP1							
Voltage	480Y/277V	480Y/277V							
Calcuated Design Load (kW)	67.22	13.23							
Resultant Power Factor	0.81	0.80							
Calcuated Design Load (kVA)	82.99	16.54							
Calculated Design Load (A)	99.82	19.89							
Panel Size	100 A	100 A							
Feeder									
Feeder Protection Size	100 A	100 A							
Number of Sets	1	1							
Wire Size									
Phase (NEC Table 310.13A)	(3) #3	(3) #3							
	AWG	AWG							
Neutral	(1) #3	(1) #3							
Ground									
Wire Area (sq. in.) (NEC Table 5)	#0 AVIG	#0 AVIG							
Fach Phase	0.0973	0 0973							
Total- Phase Conductors	0.0070	0.0070							
Neutral	0.0973	0.0973							
Ground	0.0366	0.0366							
Total Area	0 4258	0 4258							
Min. Conduit Area (sg. in.)	0.1200	0.1200							
(above*2.5)	1.0645	1.0645							
Conduit Size (NEC Table 4)	1 1/4 EMT	1 1/4 EMT							
Conduit Size (NEC Table C.1)	1 1/4 EMT	1 1/4 EMT							
Feeder Length	25 ft.	50 ft.							
Final Voltage Drop (V)	0.49 V	0.99 V							
Final Voltage Drop (%)	0.21%	0.10%							
Feeder Re-Sizing	N/A	N/A							

Table 27: Feeder sizing worksheet.

Electrical Equipment Cut Sheets

Eaton Pow-R-Line panelboards are specified for the re-sized HP1 and EHP1 panelboards. Manufacturer's information for the re-sized panelboards can be found in Appendix D.

Short Circuit Analysis

An electrical distribution system should be safely designed and selective in design to ensure continuity of the service. A short circuit calculation is performed through a single path along the distribution system. The source will begin at the utility transformer and go through feeder MDS-2, the main distribution panel section 2, feeder #7 PB-H1, and panelboard H1.

Calculation

This short circuit calculation is performed using the per-unit method with an assumed base kVA of 10,000kVA and an assumed utility contribution of 100MVA. The transformer load is sized off of the MDS-2.

Figure 30: Short circu	iit calc	ulati	on cl	nart.											
Base kVA	10000														
Utility Contribution (MVA)	100														
				Equipme	nt Charact	teristics						Per-Unit Va	lue Table		
Mark	%Х	%R	%Z	kVA	X/1000ft	R/1000ft	Z/1000ft	Length	#sets	3Ph Voltage (V)	Mark	Xu	Ru	Zu	lsc
Utility	0.1			100000						12470	Utility	0.1		0.1	
															4629.914
TRANSFORMER	5.662	1.000	5.750	2500.000							TRANSFORMER	0.22648	0.04	0.229985	
														-	36450.52
FEEDER MDS-2					0.046	0.026	0.053	100	6.000	480.000	FEEDER MDS-2	0.033492	0.018591	0.038306	
															32659.28
MDS-2												MDS-2			
	-													-	32659.28
FEEDER #7 PB-H1					0.046	0.026	0.053	25	1.000	480.000	FEEDER #7 PB-H1	0.050239	0.027886	0.057459	
															28251.58
PB-H1												PB-H1			

Overcurrent Protection Coordination Study

The overcurrent protection of an electrical system protects the power system from faults that may occur. The system protection isolates faulted parts from the rest of the electrical system by using current and voltage transformers, protective relays, and circuit breakers. This study focuses on the overcurrent protection provided by the circuit breakers.

Trip Curves

 Table 28: Overcurrent protection information.

Overcurrent Protection									
Circuit Breaker Voltage Frame Size (A) Trip Size (A)									
MCB MDS-2	480Y/277V	2500	2500						
BCB PB-H1	480Y/277V	400	400						

Trip curve plots are based off of Square D's circuit breaker trip curves for the above rated circuit breakers. Molded case breakers were used for this study. Assume the circuit breaker trip size is the same as the circuit breaker trip size.

Arc Fault Study

The arc fault study continues the short circuit analysis and overcurrent protection study of the electrical system. The short circuit analysis determines the momentary duty, interrupting duty, and short circuit rating of the electrical equipment. The overcurrent protection study determines the time required for the protective equipment to isolate an overload or short-circuit condition. An arc-flash hazard calculation is performed based on these two studies and determines the incident energy at assigned working distances throughout the electrical system and the arc-flash protection boundary. Thus, an arc-flash release of energy can be minimized by the proper protection of the electrical system.

Photovoltaic Solar Roof Array

Description

The Shepherd University Wellness Center will take advantage of incorporating solar power to save energy. Solar power will enable the facility to reduce operating costs, increase efficiency, and develop strategies to achieve sustainability. Photovoltaic solar roof arrays will be located on the Northwest side of the facility.

Climate Conditions

Location: Shepherdstown, West Virginia Average Wind Speed: 7.7mph Average Snow Load: 30psf

Solution

Equipment Selection

Mounting System: Unirac; SolarMount-I Solar Module Type: Sharp; Monocrystalline NU-U235F1 (39.1" x 64.6") Inverter: Sharp; (1) IGPlus10.0, (3) IGPlus7.5, (2) SB8000US, (2) SB7000US Manufacturer's information for the equipment selected can be found in Appendix D.

Array	System Size	Panel Quantity	Inverter Tag	Inverter Model
А	9.17 kW	39	IA	SB8000US
В	9.87 kW	42	IB	IGPlus10.0
С	9.17 kW	39	IC	SB8000US
D	8.46 kW	36	ID	IGPlus7.5
E	8.46 kW	36	IE	IGPlus7.5
F	8.46 kW	36	IF	IGPlus7.5
G	7.76 kW	33	IG	SB7000US
Н	7.76 kW	33	IH	SB7000US
Total	69.11	294		

Table 29: Photovoltaic array equipment schedule.

Equipment Sizing

TAG	INVERTER	KW	PF	KVA	AMP	WIRE	CONDUIT SIZE	
1	IA	9.17	0.8	7.34	8.82 (3) #14 AWG		16 EMT	
1	IB	9.87	0.8	7.90	7.90 9.50 (3) #14 AW		16 EMT	
1	IC	9.17	0.8	7.34	8.82	(3) #14 AWG	16 EMT	
1	ID	8.46	0.8	6.77	8.14	(3) #14 AWG	16 EMT	
1	IE	8.46	0.8	6.77	8.14	(3) #14 AWG	16 EMT	
1	IF	8.46	0.8	6.77	8.14	(3) #14 AWG	16 EMT	
1	IG	7.76	0.8	6.21	7.47	(3) #14 AWG	16 EMT	
1	IH	7.76	0.8	6.21	7.47	(3) #14 AWG	16 EMT	
	DISTRIBUTION PANEL			55.29	66.50			

Table 30: Photovoltaic array equipment sizing.

Panelboard will be sized to 100 Amps.

Results

Array Information

 Table 31: Photovoltaic array equipment cost and energy analysis.

No. Panels	Cost Per Array	No. Used	Total Cost of Array	kW/hr	Energy Output of Array
39	\$34,765.00	2	\$69,530.00	9.17	18.34 kW/hr
42	\$38,588.00	1	\$38,588.00	9.87	9.87 kW/hr
36	\$33,316.00	3	\$99,948.00	8.46	25.38 kW/hr
33	\$29,834.00	2	\$59,668.00	7.76	15.52 kW/hr

Key Figures and Assumptions

Table 32: Photovoltaic array key figures.

Constant	Quantity
Initial Cost of Arrays	\$267,734.00
Initial Cost of Mounting	\$53,214.00
Initial Cost of Installation	\$100,000.00
Federal Offset of Initial Cost	30.0%
Cost of Electricity in West Virginia	\$0.137/ kW/hr
Electricity Generated by System	69.11 kW/hr
Value of Electricity Generated by System	\$15,205.72
Usable Hours in West Virginia	4.4 kWhr

Time to Payback

Table 33: Photovoltaic array payback chart.						
Year	Cost of System/ Year					
Year 1	\$279,457.88					
Year 2	\$264,252.16					
Year 3	\$249,046.44					
Year 4	\$233,840.72					
Year 5	\$218,635.00					
Year 6	\$203,429.28					
Year 7	\$188,223.56					
Year 8	\$173,017.84					
Year 9	\$157,812.12					
Year 10	\$142,606.40					
Year 11	\$127,400.68					
Year 12	\$112,194.96					
Year 13	\$96,989.24					
Year 14	\$81,783.52					
Year 15	\$66,577.80					
Year 16	\$51,372.08					
Year 17	\$36,166.36					
Year 18	\$20,960.64					
Year 19	\$5,754.92					
Year 20	-\$9,450.80					

Summary

The Array Information chart summarizes the costs of the complete roof array system. The total cost of all the panels is \$267,734.00. Each mount costs about \$181.00 per panel for a total of \$53,214.00. The initial installation is estimated at \$100,000.00. The yearly system maintenance costs are not taken into account for the photovoltaic solar roof array system costs. The federal government will offset the cost of a solar installation with a 30 percent Investment Tax Credit.

The payback year of the photovoltaic solar roof array system takes into account several factors. Given that the cost of electricity in West Virginia is \$0.137 per kilowatts/ hour, this can be multiplied by the total energy output of the arrays to get the amount of money generated per hour. With the average usable solar hours in West Virginia of 4.4 kilowatt-hours and assuming a year consists of 365 days, the total amount of money generated yearly is \$15,205.72. The first year takes 70 percent of the initial costs of the arrays and mounting minus the total amount of money generated in a year. Each year after continues to subtract the amount of money generated per year to calculate the cost of the system that year. After 20 years, the photovoltaic solar roof array system will have paid off its initial cost and will begin to benefit the university.

Generator vs. Distributed Batteries for Emergency Lighting

Description

The Shepherd University Wellness Center currently uses a 75KW, 480Y/277V, 3Ph, 4W propane fired generator that distributes emergency power to the circuit breaker for the equipment branch automatic transfer switch and the life safety branch automatic transfer switch, both 60A, 600V. When transferred to the emergency power position, power is distributed to the emergency distribution panels EL, for the emergency equipment and fire alarms, and EHP1, for the life safety equipment and egress lighting. A change to a distributed battery system may improve the system reliability and reduce cost.

Propane Generator

Equipment Selection

Type: 75KW, 480Y/277V, 3Ph, 4W propane fired generator Initial Cost: \$46,156.86

Distributed Batteries

Equipment Selection

Types: PSDL, PS3000, and ELM2 LED

Note: Types of distributed batteries are determined form the emergency lighting schedule below. ELM2 LED emergency batteries are used in gym space where existing lighting consists of metal halide lamps. Manufacturer's information for the equipment selected can be found in Appendix D.

Table 34: Emergency lighting schedule.

EMERGENCY LIGHTING SCHEDULE											
TAG	SOURCE	TYPE	LAMP WATTAGE	NO. OF LAMPS	BALLAST TYPE	VOLTAGE	INPUT WATTS	BALLAST FACTOR	QUANTITY	LAMP Lumens	EMERGENCY BATTERY
OA-64	TRIPLE TUBE CF	F32TBX/835/A/ECO	32	2	ELECTRONIC, PS	277	64	0.98	10	4080	PSDL
OB-32	TRIPLE TUBE CF	F32TBX/835/A/ECO	32	1	ELECTRONIC, PS	277	32	0.98	23	4080	PSDL
PB-400-A- 250	MH	MPR400/VBU/O/40	400	1	ELECTRONIC	277	428	1	6	26000	
PC-400-A-											
250	MH	MPR400/VBU/O/40	400	1	ELECTRONIC	277	428	1	12	26000	
PD-64	T8 FLUOR.	F32T8/SP35/ECO	32	2	ELECTRONIC	277	62	0.88	7	2660	PS3000
PE-128	T8 FLUOR.	F32T8/SP35/ECO	32	2	ELECTRONIC	277	62	0.88	8	2660	PS3000
PL-96	T8 FLUOR.	F32T8/SP35/ECO	32	3	ELECTRONIC	277	92	0.88	9	2660	PS3000
RA-96	T8 FLUOR.	F32T8/SP35/ECO	32	3	ELECTRONIC	277	92	0.88	10	2660	PS3000
RB-64	T8 FLUOR.	F32T8/SP35/ECO	32	2	ELECTRONIC	277	62	0.88	2	2660	PS3000
RC-32	T8 FLUOR.	F32T8/SP35/ECO	32	1	ELECTRONIC	277	32	0.88	6	2660	PS3000
RD-32	TRT CF	F32T8/SP35/ECO	32	1	ELECTRONIC	120/277	32	0.88	63	2660	PS3000
RE-32	T8 FLUOR.	F32T8/SP35/ECO	32	1	ELECTRONIC	277	32	0.88	6	2660	PS3000
RG-64	T8 FLUOR.	F32T8/SP35/ECO	32	2	ELECTRONIC	277	62	0.88	14	2660	PS3000
SC-24	T5HO FLUOR.	F24W/T5/835/ECO	24	1	ELECTRONIC	277	28	1	23	1840	PS3000
WC-100	T8 FLUOR.	F32T8/SP35/ECO	32	3	ELECTRONIC	277	92	0.88	9	2660	PS3000
XA	LED	EMERGENCY LED	2.7			120/277	2.7		20		
XB	LED	EMERGENCY LED	2.7		-	120/277	2.7		22		
XC	LED	EMERGENCY LED	2.7			120/277	2.7		40		
EL1	LED	EMERGENCY LED	1.5	2		120/277	1.5		8		ELM2 LED

Equipment Cost

Table 35: Distributed battery equipment cost.

EMERGENCY BATTERY	QUANTITY	BATTERY COST		TITY BATTER' COST		TOTAL COST	
PSDL	10	\$	91.70	\$	917.00		
PSDL	23	\$	91.70	\$	2,109.10		
PS3000	7	\$	91.70	\$	641.90		
PS3000	8	\$	91.70	\$	733.60		
PS3000	9	\$	91.70	\$	825.30		
PS3000	10	\$	91.70	\$	917.00		
PS3000	2	\$	91.70	\$	183.40		
PS3000	6	\$	91.70	\$	550.20		
PS3000	63	\$	91.70	\$	5,777.10		
PS3000	6	\$	91.70	\$	550.20		
PS3000	14	\$	91.70	\$	1,283.80		
PS3000	23	\$	91.70	\$	2,109.10		
PS3000	9	\$	91.70	\$	825.30		
ELM2 LED	8	\$	72.00	\$	576.00		
		Т	OTAL	\$	17,999.00		

Solution

The cost of the propane generator of \$46,156.86 is more than two and half times the total cost of the emergency lighting batteries of \$17,999.00. Thus, by cost alone the distributed batteries surpass the propane generator.

Other factors may be taken into consideration when deciding between using a generator or distributed batteries for the emergency lighting system. Battery backup power takes milliseconds to start up, while gas generators with automatic start up take 10 to 20 seconds to start running. Batteries operate emission-free. Gas generators must be operated outdoors due to their toxic exhaust and can be noisy. Gas generators also need a reserve supply of fuel, which requires outdoor storage as well as conditioning additives and periodic replacement of the fuel so the gas does not go bad while it sits. Batteries can only provide power for a few hours before needing a recharge, so they are most appropriate for short-term backup. Gas generators will run as long as you need them to, provided you keep filling them with gas. A large stationary unit, as required for the University building, can run for days on large propane tanks.

Architectural Breadth

An architectural study of the multi-purpose room will evaluate and improve the interior space in addition to the lighting re-design of the space.

Description

Located on the second floor of the facility, the multi-purpose room is an open square for freedom of movement required by the aerobic and dance classes that take place here. The room is approximately 40 feet by 38 feet with a 14 foot ceiling. Two large windows in the space look out into the building's large gym. In addition to the glass windows, other room materials include wood athletic flooring, cream-colored painted walls, and ceiling tile. This space does not contain furniture or any permanent layout. The room is equipped for dance, aerobic, and wellness classes. As a space for energetic activities, the space should complement its use. The multi-purpose room should be an exciting space that engages the users throughout their workout.

Existing Conditions

The existing multi-purpose room is an open square of freedom for movement with a typical 2 foot by 4 foot fluorescent troffer lighting layout.

Plans

Renderings

Figure 33: Existing multi-purpose space rendering.

Re-Design Solution

The multi-purpose room should complete the high intensity of the activities within the space. The lighting depth re-designs the space to create a festive impression. A random pattern of point sources are used to create sparkle within the space. For this architectural study, sheets of perforated metal are incorporated in the space to allow for light to reflect onto the surfaces and emphasize the playfulness of the space.

Plans

Figure 34: Re-designed multi-purpose space lighting plan.

Details

Perforated metal panels are designed to suspend from the ceiling by cable cords. Metal L-shaped angles will be used to frame the square shaped panels and keep them in rigid form. Holes are cut out of the metal as an aesthetic detail and allow for light to penetrate into the space.

Figure 35: Detail of metal panel. Black color represents the metal and white space represents cutout spaces.

Figure 36: Detail of metal panel suspended from ceiling grid. Image is courtesy of Hunter Douglas Contract.

Figure 37: Detail of metal L-shaped angle that will frame the metal panel. Image is courtesy of Hunter Douglas Contract.

Renderings

Figure 38: Re-designed multi-purpose space rendering.

Summary

The architectural re-design of the multi-purpose room takes a simple space and makes it more visually appealing. Focal points and stimulating elements are added to increase movement throughout the space. Users will experience the space differently depending on their stance and the light reflection at that point. Thus, the re-design meets the needs of the aerobic space and successfully improves the existing room.
Acoustical Breadth

An acoustical study of the multi-purpose room will evaluate the noise level in the existing space and the noise level in the re-designed interior architectural space.

Description

The multi-purpose room is an open square space with a 14 foot high ceiling. The space is used for fitness classes and educational purposes and will contain speech from the instructor and music for dance lessons. The space is categorized as a "Lecture and Conference room." The optimum reverberation time for this space is high-lighted in the figure below.

Figure 39: Optimum reverberation time bar graph indicating. The average reverberation time at mid-frequency (average at 500 and 1000Hz) are given for a variety of activities.

Existing Conditions

Room Volume: 21,317 ft³

Table 36: Multi-purpose room surface area calculations.

SURFACE AREA					
CEILING	1511.44 ft ²				
WALLS	1937 ft²				
DOORS	120 ft ²				
WINDOWS	216 ft ²				
FLOOR	1511.44 ft ²				

Assumed Materials

Ceiling= Thin, porous sound-absorbing material, 3/4 inch thick Walls= Plaster on concrete block Doors= Wood, 1-inch paneling with airspace behind Windows= Ordinary glass windows Floor= Wood

Table 37: Multi-purpose room material absorption calculations.

MATERIAL ABSORPTION									
	S (ft²)	α	a (sabins)						
CEILING	1511.44	0.80	1209.15						
WALLS	1937	0.07	135.59						
DOORS	120	0.09	10.80						
WINDOWS	216	0.18	38.88						
FLOOR	1511.44	0.10	151.144						
		TOTAL a	1545.57						

 Table 38: Multi-purpose room reverberation time calculations.

REVERBERATION TIME AT MID-FREQUENCY						
V (ft³)	а	T (s)				
21317	1545.57	0.69				

Analysis

The existing conditions of the multi-purpose room indicate a reverberation time of 0.69 seconds. For a lecture and conference room, this time is located within the preferred range of reverberation times at mid-frequency. Thus, the existing conditions are adequate for the acoustics within the space and no acoustical re-design is necessary.

Re-Design Evaluation

As part of the re-design of the architectural interior of the multi-purpose space, an acoustical analysis evaluates the new acoustical levels. In the re-design, the perforated metal panels are factored into the acoustical calculations.

Table 33. With-purpose room material absorption calculations.									
MATERIAL ABSORPTION									
	α	a (sabins)							
METAL	68.15	0.57	38.85						
HOLES	31.85	1.85 1.00 31							
		METAL AVG. a	35.35						
CEILING	1411.44	0.8	1129.15						
WALLS	1937	0.07	135.59						
DOORS	120	0.09	10.80						
WINDOWS	216	0.18	38.88						
FLOORS	1511.44	0.1	151.14						
		TOTAL a	1500.91						

Table 39: Multi-purpose room material absorption calculations.

Table 40: Multi-purpose room reverberation time calculations.

REVERBERATION TIME AT MID-FREQUENCY						
V (ft³)	а	T (s)				
21317	1500.91	0.71				

Summary

The re-design conditions of the multi-purpose room indicate a reverberation time of 0.71 seconds. For a lecture and conference room, this time is located within the preferred range of reverberation times at mid-frequency. Thus, the re-design conditions are adequate for the acoustics within the space and deemed acceptable to implement.

References

Text

(1) ASHRAE Standard 90.1: Energy Standard for Building Except Low-Rise Residential Buildings. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Atlanta, GA. 2007.

(2) The IESNA Lighting Handbook: Reference and Application, 9th Edition. Illuminating Engineering Society of North America. New York, NY. 2000.

(3) National Fire Protection Association. *NFPA 70*- National Electric Code. 2008 Edition. Quincy, Massachusetts: National Fire Protection Association, 2007.

Software Tools

AGI32 Adobe Photoshop AutoCAD 2010

Acknowledgements

Thank you to the Penn State Architectural Engineering faculty for their devotion to their senior thesis students, especially my thesis director Professor Robert Holland. A special thanks to my thesis advisors Dr. Kevin Houser and Ted Dannerth for their support throughout the senior thesis process.

Thank you to Shawn Good for your guidance and providing me this building to use for my thesis project.

Lastly, thank you to my family and friends for your unconditional love and encouragement throughout this journey.

Appendix A

Lighting plans are provided in the following order:

- E 1.0 Outdoor Entry Lighting Plan
- E 1.1 Rotunda First Level Lighting Plan
- E 1.2 Rotunda Second Level Lighting Plan
- E 1.3 Multi-Purpose Room Lighting Plan
- E 1.4 Fitness Room Lighting Plan

Appendix B

Electrical drawings are provided in the following order:

- E 2.0 Photovoltaic Array Roof Plan
- E 2.1 Photovoltaic Array Wiring Diagram

Appendix C

Lighting equipment manufacturer information is provided in the following order:

- L01- Luminaire
- L01- Lamp
- L01- Ballast
- L02- Luminaire
- L02-Lamp
- L02-Ballast
- L03- Luminaire
- L04- Luminaire
- L04-Lamp
- L05- Luminaire
- L05-Lamp
- L06- Luminaire
- L06-Lamp
- L06-Ballast

L01- Luminaire

	2LIGHT	Recessed	Square	Non-IC	Q"
Call Star	Wallwasher	Horizontal	32W	GX24q-3	0
	Type: Project:			Compact Fluorescent	online Find it Fast 424

2LS1W	1H32GX2	2403		FF				
FIXTURE			BALLAST/VOLTAGE	REFLECTOR	FII	NISH		OPTIONS
2LIGHT Recessed Squar 8" Aperture Non-IC Standard Wet Location Wallwasher Horizontal, \$2W GX24q-3 Base	8 5 14 14 10 10 17 17 17 17 17 17 17 17 17 17 17 17 17	U Uni 3 Dec 11 LU 12 LU 11 LU 12 LU 11 LU 12 LU 11 AD 12 AD	versal 120V/277V ilcated 347V IRON HILume® (1%) 120V IRON HILume® (1%) 277V IRON Compact SE [™] (5%) 120V IRON Compact SE (5%) 277V IRON TuWire® (5%) 120V IRON TuWire (5%) 277V VANCE® MARK VII® (5%) 120V VANCE MARK VII (5%) 277V	FF Faceted	SRM WHM	Titan Frame White Frame	MDLSBL MDLSGR EM EH CP F 9930 9952 9956	Mellow Downlight Filter - Blue Mellow Downlight Filter - Yellow Mellow Downlight Filter - Green Standby Battery Pack - Standard Lumen Standby Battery Pack - High Lumen Chicago Plenum Fusing Set of two 27" C-Channel mounting bars. Set of two 52" C-Channel mounting bars. Set of two 28" 10 ga. one-piece universal mounting bars.

VIEWS

16-gauge galvanized steel plate suitable for accessible or inaccessible ceiling types. Rigid mounting brackets provide 4* vertical adjustment from side of mounting frame. Brackets accommodate 11/2' C-Channel, 1/2' EMT, 3/4' lathing channel, Caddy 517A, B, and C-Channels for flexibility in mounting. (mount-ing bars ordered as an optional accessory).

Optical Housing

MECHANICAL

Mounting Frame

Square steel housing, welded corners, post-painted white powder coat paint is light-tight, completely enclosed, exceeding IP44 requirements. Optical housing is installed from below with swing-out mounting arms for vertical adjustment in cellings up to 1 3/8* thick.

Door Frame/Trim

Toolless "Push and Release" die-cast aluminum door frame inclusive of lower reflector and diffuser swings down for easy relamping and cleaning. Die-cast aluminum trim provides 5/16' overlap for ceiling opening. Door frame and trim in titan or white color finish.

ELECTRICAL **Junction Box**

Integral 16-guage galvanized steel junction box provided on mounting frame. UL Listed for thru wiring (4 in 4 out at 90° C). Flexible electrical whip with quick connect is provided for field connection to the junction box of the optical assembly. Ground wire is supplied.

Ballast

Electronic 120/277 universal voltage Class P electronic ballast is thermally protected, high power factor, with auto-reset shutdown circuit for one compact fluorescent lamp. Socket

(1) triple tube compact fluorescent lamp, 4pin: GX24q-3 (32W). Lamp supplied by others.

Code Compliance / Listing UL Listed for Wet Location. Covered Ceiling Mount Only. Fixtures with Lama standby battery packs are rated

for dry locations only. Approved for thru wiring. Above ceiling access not required

OPTICAL SYSTEM

Unner Reflector High performance, high reflectance aluminum planar reflector.

Lower Beflector

Round lower reflector is injection-molded of high-grade recyclable polycarbonate with diamond-shaped mirror-like facets in high specular silver; free of iridescence due to a surface of high purity aluminum applied by sputtering, and coated with a transparent hard silicone finish for durability and easy cleaning. An integral kicker reflector with stippled specular finish provides wall wash illumination. Kicker rotates 360° independently from fixture housing. A standard opal lens on outside of reflector provides diffuse lighting.

Optional colored filters can be used in place of opal diffuser for a subtle introduction of color without affecting the quality of light.

Weight-10.0 lbs.

COMPANION DOWNLIGHTS USING SAME SOCKET/WATTAGE PHOTOMETRICS NOTES FINISH/REFLECTOR %FFF TYPE **CATALOG NUMBER** FIF # SPEC SHEET PAGE REPORT # Downlight 2LS1D1H32GX24Q3 418 2LS-2 Faceted LTL #12106 35.5%

HiLume and TuWire are registered trademarks of Lut	tron Electronics Co., Inc. Advance and Mark	VII are registered tradem	arks of Philips Electronics North America Corporation Compact SE i	's a trademark of u	Lutron Electronics Co., Inc
Zumtobel Lighting Inc. ©2008 3300 Route 9W Highland, NY 12528-2630	TEL (845) 691-6262 (800) 932-0633 FAX (845) 691-6289	1	In a continuing effort to offer the best product possible we reserve the right to change, without notice, specifications or materials. Technical specification sheets that appear on www.zurntobel. us are the		ZUMTOBEL
10/31/08	www.zumtobel.us	2LS-11	most recent version and supersede all other versions that exist in any other printed or electronic form.		

2LIGHT			TECHN	IICAL D	ATA		
LTI		MINAIRE TH	STING	LABOR	ATORY	, INC.	SUSTAINING MEMBER of Sur IESNA
905 Harriso	n Street · Allen	town, PA 18103 ·	510-770-104	14 · Fax 610	-770-8912	• www.Lumina	ireTesting.com
LTL NUMBER: PREPARED FOR	12106 : ZUMTOBI	EL LIGHTING	, INC.			DATE:	10-22-2007
CANDELA D 0 2 5 2 10 3 15 3 20 3 30 3 35 3 40 2 45 2 50 2 55 2 60 1 65 1 70 1 75 80 85 90	ISTRIBUT .0 22.5 89 289 95 306 33 346 68 375 78 376 65 336 38 289 12 253 88 229 59 229 44 236 25 228 90 202 49 165 03 122 60 79 25 37 6 8 0 0	$\begin{array}{cccccccc} \text{ION} & 45.0 & 67. \\ & 289 & 28 \\ & 317 & 32 \\ & 351 & 36 \\ & 371 & 36 \\ & 364 & 35 \\ & 311 & 31 \\ & 253 & 26 \\ & 219 & 22 \\ & 197 & 21 \\ & 202 & 19 \\ & 214 & 17 \\ & 209 & 14 \\ & 191 & 11 \\ & 159 & 8 \\ & 118 & 5 \\ & 76 & 2 \\ & 34 & 1 \\ & 8 \\ & 0 \end{array}$	5 90.0 9 289 5 329 6 386 9 381 5 349 6 2309 2309 2399 8 1422 5 911 249 91 1 244 91 1 244 7 39 1 23 30 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 112.5\\ 289\\ 323\\ 372\\ 402\\ 398\\ 404\\ 376\\ 318\\ 277\\ 199\\ 112\\ 68\\ 44\\ 229\\ 14\\ 7\\ 22\\ 14\\ 7\\ 2\\ 0\end{array}$	135.0 289 334 371 3966 377 384 409 374 282 174 101 666 39 25 19 15 9 3 0	$157.5 \\ 289 \\ 352 \\ 397 \\ 425 \\ 420 \\ 410 \\ 380 \\ 339 \\ 286 \\ 187 \\ 103 \\ 64 \\ 36 \\ 24 \\ 23 \\ 18 \\ 13 \\ 3 \\ 0$	
180 0 2 5 3 10 3 15 4 20 3 25 3 30 3 40 3 45 2 55 1 60 65 70 75 85 90	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 270.0 93 342 342 28 377 1 328 294 294 294 104 66 66 104 66 452 104 66 452 104 66 104 100 0000 0000 0000 0000 00000 0000000000	292.5 289 323 357 354 323 257 219 153 83 66 49 34 200 99 20	315.0 2899 296 313 321 311 307 298 280 257 207 161 142 123 98 71 44 21 44 0	337.5 289 274 305 330 337 339 332 315 311 308 278 221 159 106 68 39 17 3 0	

10/31/08

2LS-11B

ZUMTOBEL

ZUMTOBEL

10/31/08

LTL NUMBER: 12106

DATE: 10-22-2007

PREPARED FOR: ZUMTOBEL LIGHTING, INC.

COEFFICIENTS OF UTILIZATION - ZONAL CAVITY METHOD

EFFECTIVE FLOOR CAVITY REFLECTANCE 0.20

RC		8	С			70	C			50			30			10		0
RW	70	50	30	10	70	50	30	10	50	30	10	50	30	10	50	30	10	0
0	42	42	42	42	41	41	41	41	40	40	40	38	38	38	36	36	36	36
1	40	38	37	36	39	37	36	35	36	35	34	35	34	33	33	33	32	31
2	37	34	32	31	36	34	32	30	32	31	30	31	30	29	30	29	28	28
3	34	31	28	26	33	30	28	26	29	27	26	28	27	25	27	26	25	24
4	31	28	25	23	31	27	25	23	26	24	23	26	24	22	25	23	22	21
5	29	25	22	20	28	25	22	20	24	21	20	23	21	19	23	21	19	19
6	27	23	20	18	26	22	20	18	22	19	17	21	19	17	21	19	17	16
7	25	20	18	16	24	20	17	15	20	17	15	19	17	15	19	17	15	15
8	23	18	16	14	22	18	15	14	18	15	13	17	15	13	17	15	13	13
9	21	17	14	12	21	16	14	12	16	13	12	16	13	12	15	13	12	11
10	20	15	12	11	19	15	12	10	15	12	10	14	12	10	14	12	10	10

NOTE: THE ZONAL CAVITY CALCULATION TECHNIQUE IS ACCURATE WHEN LUMINAIRES WITH SYMMETRIC CANDELA DISTRIBUTIONS ARE EMPLOYED AND WHEN THE LUMINAIRES ARE LOCATED SYMMETRICALLY THROUGHOUT THE ROOM. THIS UNIT HAS SPECIAL CHARACTERISTICS AND THEREFORE THESE COEFFICIENTS SHOULD BE USED WITH CAUTION.

THIS TEST WAS CONDUCTED USING RELATIVE PHOTOMETRY TECHNIQUES ACCORDING TO STANDARD IESNA PROCEDURES. THE USER MUST THEREFORE USE CAUTION IN THE FOLLOWING STULATIONS: 1) THIS TEST WAS PERFORMED USING A SPECIFIC BALLAST/LAMP COMBINATION. EXTRAPOLATION OF THESE DATA FOR OTHER BALLAST/LAMP COMBINATIONS MAY PRODUCE ERRONEOUS RESULTS. 2) ACCORDING TO IESNA PROCEDURES, THE BALLAST(S) AND LAMP(S) ARE PRESUMED TO PRODUCE 100% OF RATED OUTPUT. AN APPROPRIATE BALLAST FACTOR MUST BE APPLIED TO THE LUMEN OUTPUT RATINGS AND LUMINOUS INTENSITY VALUES GIVEN. 3) THIS TEST WAS CONDUCTED IN A CONTROLLED LABORATORY ENVIRONMENT WHERE THE AMBIENT TEMPERATURE WAS HELD AT 25°C ±1°C. FIELD PERFORMANCE MAY DIFFER PARTICULARLY IN REGRADS TO CHANGE IN LUMINOUS OUTPUT AS A RESULT OF DIFFERENCE IN AMBIENT TEMPERATURE AND METHOD OF MOUNTING THE LUMINAIRE.

ZUMTOBEL

L01-Lamp

GE Lighting

97632 - F32TBX/841/A/ECO

GE Ecolux® Biax® T4 - Facilities; Retail Display; Hospitality; Office; Restaurant; Warehouse

Photo

Not Available

High Color Rendering

GENERAL CHARACTERISTICS Lamp Type

Lamp Type	Compact Fluorescent - Plug-
1 21	In
Bulb	Τ4
Base	GX24q-3
Wattage	32
Voltage	120/100
Rated Life	17000 hrs
Starting Temperature	0 K (32 °F)
Cathode Resistance	2.7 Ohm
LEED-EB MR Credit	87 picograms Hg per mean
	lumen hour
Rated Life (rapid start) @ Time	17000.0 @ 3.0/20000.0 @
	12.0 h
Additional Info	Dimmable with appropriate
	dimming ballast./End of
	Life Protection (EOL)/TCLP
	compliant
Primary Application	Facilities;Retail
	Display;Hospitality;Office;Restaurant;Wa

5.5 cm

5.5 cm 4.9 cm

PHOTOMETRIC CHARACTERISTICS

Initial Lumens 2400 Mean Lumens Nominal Initial Lumens per Watt 2040 75 Color Temperature 4100 K Color Rendering Index (CRI) 82

ELECTRICAL	CHARACTERIST	ICS
Current (max)	5.	25 A

Open Circuit Voltage (after	265 V
preheating)	
Open Circuit Voltage	515 V
Lamp Current	0.32 A
Preheat Voltage	4.25 V
Current Crest Factor	1.7
Supply Current Frequency	20000 Hz

DIMENSIONS

DIVILIAOIONO	
Maximum Overall Length	
(MOL)	
Nominal Length	
Base Face to Top of Lamp	

PRODUCT	INFORMATION
Product Code	9

Product Code	97632
Description	F32TBX/841/A/ECO
ANSI Code	60901-IEC-7432-2
Standard Package	Case
Standard Package GTIN	10043168976326
Standard Package Quantity	10
Sales Unit	Unit
No Of Items Per Sales Unit	1
No Of Items Per Standard	10
Package	
UPC	043168976329

Savings

CAUTIONS & WARNINGS

Caution

· Lamp may shatter and cause injury if broken - Remove and install by grasping only plastic portion of the lamp.

NOTES

+ Pin lamp minimum starting temperature is a function of the ballast. Most ballasts are rated with a minimum starting temperature of 50 degrees F (10 C). Ballasts are also available that provide reliable starting to 0 degrees F (-18C) and -20 F (-29C).

Energy

· Amalgam product experience stable brightness over a wider temperature range and in various operating positions.

Based on 60Hz reference circuit.

• Fluorescent lamp lumens decline during life

Feb 4, 2011 1:13:45 PM For additional information, visit www.gelighting.com

L01-Ballast

71443 - GEC226-MVPS-BES

GE CFL Multi-Volt ProLine™ Electronic Program / Rapid Start Ballast Multi-Voltage technology means a single ballast handles voltage from 108V to 305V Programmed starting for extended lamp life

End-of-Lamp-Life Protection

Color Coded Poke-In Connectors simplifies wiring

GENERAL CHARACTERISTICS Application 2-CFQ26W, FT24 or 1-42W,

Application Category Ballast Type

Starting Method Lamp Wiring Line Voltage Regulation (+/-) Case Temperature Ballast Factor Power Factor Correction Sound Rating Enclosure Type Additional Info

CFTR32 Bottom Exit w Studs 120-277V Proline PS Compact Fluorescent Electronic - Program / Rapid Start Programmed start Series 10 % 75 °C(167 °F) Normal Active A (20-24 decibels) Metal Auto-restart/Thermally protected/Universal voltage

PRODUCT INFORMATION Product Code Description Standard Package Standard Package GTIN Standard Package Quantity Sales Unit No Of Items Per Sales Unit No Of Items Per Standard Package UPC

71443 GEC226-MVPS-BES Case 10043168714430 10 Individual Pack 10

043168714433

DIMENSIONS

Case dimensions	
Length (L)	5.0 in(127.00 mm)
Width (W)	2.4 in(60.96 mm)
Height (H)	1.0 in(25.40 mm)
Mounting dimensions	
Mount Length (M)	4.6 in(117.60 mm)
Weight	0.57 lb
Exit Type	Poke-in
Remote Mounting Distance to	12 ft
Lamp	
Remote Mounting Wire Gauge	18 AWG

ELECTRICAL CHARACTERISTICS Supply Current Frequency 50 Hz/60 Hz

SAFETY & PERFORMANCE

- CSA
 UL Class P
 UL Listed
 UL Type 1 Outdoor
 UL Type CC
 UL Type CC

- UL Type HL
 FCC Part 18 Class B at 120 volts

SPECIFIC	ATIONS BY	LAMP & WA	TTAGE							
Lamp	# of Lamps	Line Volts	System	Nom. Line	System	Ballast	Power	Crest Fac	tor THD% (<=)	Min. Starting
			Watts	Current	Ballast	Efficacy	Factor% (>	>=)(<=)		Temp (°F/°C)
					Factor	Factor				
FT24W/2G1	0 2	120	48	0.41 A	0.93	NaN	99	1 1/2	10	-20.0 / -29
FT24W/2G1	0 2	277	48	0.18 A	0.93	NaN	99	1 1/2	10	-20.0 / -29
FC16T9/40V	V 1	120	43	0.16 A	1.00	2.33	97	1 1/2	10	-20.0 / -29
FC16T9/40V	V 1	277	43	0.16 A	1.00	2.33	97	1 1/2	10	-20.0 / -29
FC16T9	1	120	43	0.16 A	1.00	2.33	97	1 1/2	10	-20.0 / -29
FC16T9	1	277	43	0.16 A	1.00	2.33	97	1 1/2	10	-20.0 / -29
F24T5/HO	2	120	51	0.44 A	1.00	1.96	99	1 1/2	10	-20.0 / -29
F24T5/HO	2	277	51	0.19 A	1.00	1.96	98	1 1/2	10	-20.0 / -29
CFTR42W/4	P 1	120	46	0.38 A	0.98	2.13	98	1 1/2	10	-20.0 / -29
CFTR42W/4	P 1	277	46	0.17 A	0.98	2.13	98	1 1/2	10	-20.0 / -29
CFTR32W/4	P 1	120	36	0.31 A	0.98	2.72	98	1 1/2	10	-20.0 / -29
CFTR32W/4	P 1	277	36	0.13 A	0.98	2.72	98	1 1/2	10	-20.0 / -29
CFTR26W/4	P 1	120	29	0.24 A	1.10	3.79	98	1 1/2	10	-20.0 / -29
CFTR26W/4	P 1	277	29	0.11 A	1.10	3.79	98	1 1/2	10	-20.0 / -29
CFTR26W/4	P 2	120	54	0.45 A	1.00	1.85	99	1 1/2	10	-20.0 / -29
CFTR26W/4	P 2	277	54	0.2 A	1.00	1.85	99	1 1/2	10	-20.0 / -29
CFS21W/4P	2	120	51	0.42 A	1.12	2.20	99	1 1/2	10	-20.0 / -29
CFS21W/4P	2	277	51	0.18 A	1.12	2.20	99	1 1/2	10	-20.0 / -29
CFQ26W/4F	· 1	120	27	0.23 A	1.00	3.70	99	1 1/2	10	-20.0 / -29

For additional information, visit www.gelighting.com

CFQ26W/4P	1	277	27	0.1 A	1.00	3.70	99	1 1/2	10	-20.0 /-29
CFQ26W/4P	2	120	51	0.43 A	1.00	1.96	98	1 1/2	10	-20.0 /-29
CFQ26W/4P	2	277	51	0.19 A	1.00	1.96	98	1 1/2	10	-20.0 /-29

WARRANTY INFORMATION

GE Lighting warrants to the purchaser that each ballast will be free from defects in material or workmanship for period as defined in the attached documents from the date of manufacture when properly installed and under normal conditions of use.

Feb 4, 2011 1:19:32 PM For additional information, visit www.gelighting.com

L02-Luminaire

L02-Lamp

GE Lighting 46804 - F80W/T5/841/ECO GE Ecolux® Starcoat® T5 Passes TCLP, which can lower disposal costs.

CAUTIONS & WARNINGS

Caution

- Lamp may shatter and cause injury if broken
- Wear safety glasses and gloves when handling lamp. - Do not use excessive force when installing lamp.
- Warning

· Risk of Electric Shock

- Turn power off before inspection, installation or removal.

GRAPHS & CHARTS

Lumen Maintenance

Lamp Mortality

Spectral Power Distribution

For additional information, visit www.gelighting.com

GENERAL CHARACTERISTICS Linear Fluorescent - Straight

Lamp Type
Bulb
Base
Wattage
Voltage
Rated Life
Rated Life (rapid start) @ Time
Bulb Material
Starting Temperature
LEED-EB MR Credit

Linear Τ5 Miniature Bi-Pin (G5) 80 145 30000 hrs 30000.0 @ 3.0/36000.0 @ 12.0 h Soda lime -20 °C (-4 °F) 13 picograms Hg per mean lumen hour TCLP compliant

Additional Info

PHOTOMETRIC CHARACTERISTICS

Initial Lumens 7000 Mean Lumens Nominal Initial Lumens per Watt 6440 87 4100 K Color Temperature Color Rendering Index (CRI) 85 1.7 S/P Ratio (Scotopic/Photopic Ratio)

ELECTRICAL CHARACTERISTICS

Open Circuit Voltage (rapid	580 V@10°C
start) Min @ Temperature	
Cathode Resistance Ratio - Rh/	4.25
Rc (MIN)	
Cathode Resistance Ratio - Rh/	6.5
Rc (MAX)	
Current Crest Factor	1.7

DIMENSIONS

Maximum Overall Length	57.6060 in(1463.2 mm)
(MOL)	
Nominal Length	57.100 in(1450.3 mm)
Bulb Diameter (DIA)	0.625 in(15.9 mm)
Bulb Diameter (DIA) (MAX)	0.625 in(15.9 mm)
Max Base Face to Base Face	57.050 in(1449.1 mm)
(A)	
Face to End of Opposing Pin	57.230 in(1453.6 mm)
(B) (MIN)	
Face to End of Opposing Pin	57.330 in(1456.2 mm)
(B) (MAX)	

PRODUCT INFORMATION Product Code

Toddor oodo	10001
Description	F80W/T5/841/ECO
Standard Package	Case
Standard Package GTIN	10043168468043
Standard Package Quantity	40
Sales Unit	Unit
No Of Items Per Sales Unit	1
No Of Items Per Standard	40
Package	
JPC	043168468046

468046

46804

L02-Ballast

Professional Series			Normal	Light C	output
Lamp/Ballast Guide				m	
40W T5 - DULUX® L 1-lamp QTP1x40TT5 PSN-F 2-lamp QTP2x40TT5 PSN-F 3-lamp QTP3x40TT5 PSN-B Primary Lamp Type: FT40DL	SYLVANIA QUICKTRONIC PROStart DL40 operates DULUX L 40 lamps with maximum efficacy and high lumen output. PROStart DL40 provides over 20% more lumen output than 34T12 systems. Also, the small lamp diameter and sleek profile provide new design options and improved fixture optics.		June 1		
ey System Features	QUICKSENSE ballast				
PROStart Programmed Rapid Start Ballast 88% Ballast factor	technology, a patented circuitry designed to shut down the system reliably and safely when the lamps have reached their end-of-life.		Ň		
QUICKSENSE® ballast technology (end-of-lamp-life sensing) 0°F Starting High luminous efficacy Virtually eliminates lamp flicker	Setting the standard for quality, SYSTEM DL40 is also covered by our QUICK 60+ [®] warranty, the first and most comprehensive system warranty in the industry.	SYSTEM PROStart DL40 is available in one, two, and three lamp models in 120V and 277V to cover a wide range of appli- cations.			
Quiet operation	System Information	System Type	Input	Initial	System
High power factor	oystom monitation	(2 x 2) EP 40712 Std Magnetia Ballast	Wattage	Lumens	LPW
Low narmonic distortion Lightweight Wiretran connectors – available	QUICKTRONIC PROStart ballasts provide optimum starting conditions to provide	E.S. Magnetic Ballast FB34T12 - E.S. Magnetic Ballast	86 72	5795 4575	67 66
with or without leads pre-inserted	over 50,000 switching cycles for	FB032T8 - Magnetic	71	5415	76
UL, CSA, FCC	occupancy sensor and building	DL40 - QTP2x40TT5-PSN	76	5545	73
Auto Reset	QUICKSENSE ballast technology helps to protect against over-	DL40 - QTP3x40TT5-PSN	110	8315	76
Application Information SYLVANIA QUICKTRONIC PROStart DL40 is ideally suited for: Occupancy Sensors Building Control Systems Any applications where maximum lamp life is required to reduce maintenance costs	well as cracking of the glass wall, and uses dynamic end-of- lamp-life sensing to avoid false shutdowns caused by some static sensing methods. QUICK- SENSE ballast technology will auto reset when the lamps are replaced with new ones. A complete OSRAM SYLVANIA System Performance Guide showing performance character- istics for all combinations of lamps and ballasts is available upon request.				
					.0

L03-Luminaire

P1.87.4 A lfa **DRUM PENDANTS P208 - TOM-TOM** Project **12V LED** Fixture Type: Location: Contact/Phone: **PRODUCT DESCRIPTION** Pendant Kit includes: Quick Jack Cord Set - 78" Coaxial Cable • Glass Shade • 12V 5W LED light engine with diffusing cover • Cordset can be shortened in the field Ω Note: The fabric shades should never be submerged in water. A soft brush or brush attachment on a vacuum should be sufficient. If the shade becomes soiled and better cleaning is necessary, we recommend spot cleaning only with a soft rag, Woolite or a similar gentle detergent, and warm water. 8

ORDERING INFORMATION					
Model	Mounting Adapter	Lamp	Hardware Finish		
P208		LA2	STN		

P208	QJ		LA2]	STN	I]	- F003	3	P208QJLA2-STN-F003
	QJ	Quick Jack Adapter*	LA2	LED - GEN A, 2700K	BRZ	Vintage Bronze	F001	Black Linen	
	MP	Single Dome MonoPoint	LA3	LED - GEN A, 3000K	STN	Satin Nickel	F002	Tan Linen	
	MB3	3X Pendants on Arched Bar					F003	White Linen	
	MP3	3X Pendants on Large Disc							
	MY3	3X Pendants on Triple Side Port Disc							

*For use on Alfa Quick Jack Systems

PRODUCT SPECIFICATIONS

Electrical

12/10

LED: 5W (operating), 2700K or 3000K, >80CRI, 50,000 hour life to 70% of light output

Agency Approval

Labels: ETL Listed to UL 2108 for use in U.S. • ETL Listed to CSA C22.2 No. 250 for use in Canada.

Mounting Specifications QJ: Supplied with Quick Jack Adapter for use on MonoTrack. MP: Supplied on a Non-Quick Jack (905 type) Slim Line

MonoPoint. LED capable Electronic Transformer. Dimmable*. MB3: 3X Pendants supplied on a Non-Quick Jack (99003 type) Triple Arched Bar MonoPoint. Internal 60W Electronic Transformer. Dimmable*.

MP3: 3X Pendants supplied on a Non-Quick Jack (99014 type) Triple Large Disc MonoPoint. Internal 60W Electronic

Transformer. Dimmable*. MY3: 3X Pendants supplied on a Non-Quick Jack (99015 type) Triple Large Disc Side Port MonoPoint. Internal 60W Electronic Transformer. Includes 3 pendant swags. Dimmable*.

*Alfa recommends the use of Solid State (Electronic) Dimmers with Alfa products with Electronic Transformers. Magnetic Transformers may be dimmed with a quality Incandescent Dimmer.

ADAPTER DIMENSIONS

Shade Finish

Example

1300 S. Wolf Road + Des Plaines, IL 60018 + Phone (847) 827-9880 + Fax (847) 827-2925 220 Chrysler Drive • Brampton, Ontario • Canada LóS 6B6 • Phone (905) 792-7335 • Fax (905) 792-0064 Visit us at www.junolightinggroup.com Printed in U.S.A. ©2010 Juno Lighting, LLC.

L04- Luminaire

There is no equal

U.S. Patent RE37,310E. Canadian 2,147,106, EPO 0679835, Australia 680116, 9/10 Mexico 193817, other foreign Patents Pending.

L04-Lamp

GE Lighting

97634 - F42TBX/830/A/ECO

Savings

[PI]

GE Ecolux® Biax® T4 - Facilities; Retail Display; Hospitality; Office; Restaurant; Warehouse

Photo

Not Available

High Color Rendering

GENERAL CHARACTERISTICS

Lamp Type	Compact Fluorescent - Plug-				
1 11	In				
Bulb	Τ4				
Base	GX24-q4				
Rated Life	17000 hrs				
Starting Temperature	-18 °C (-0 °F)				
Cathode Resistance	2.7 Ohm				
LEED-EB MR Credit	66 picograms Hg per mean				
	lumen hour				
Rated Life (rapid start) @ Time	17000.0 @ 3.0/20000.0 @				
	12.0 h				
Additional Info	Dimmable with appropriate				
	dimming ballast./End of				
	Life Protection (EOL)/TCLP				
	compliant				
Primary Application	Facilities;Retail				
	Display;Hospitality;Office;Restaurant;Wa				
PHOTOMETRIC CHARACTE	RISTICS				
Initial Lumens	3200				
Mean Lumens	2690				
Nominal Initial Lumens per Watt	76				

PH Initi

Me Nor Color Temperature Color Rendering Index (CRI) 3000 K 82

ELECTRICAL CHARACTERISTICS

Wattage	42
Voltage	120
Current (max)	5.25 A
Open Circuit Voltage (after	265 V
preheating)	
Open Circuit Voltage	515 V
Lamp Current	0.32 A
Preheat Voltage	4.25 V
Current Crest Factor	1.7
Supply Current Frequency	20000 Hz

DIMENSIONS

Maximum Overall Length (MOL) Nominal Length Base Face to Top of Lamp

PRODUCT INFORMATION

Product Code Description ANSI Code Standard Package Standard Package GTIN Standard Package Quantity Sales Unit No Of Items Per Sales Unit No Of Items Per Standard Package UPC

97634 F42TBX/830/A/ECO 60901-IEC-7442-2 Case 10043168976340 10 Unit 10

6.4000 in(162.6 mm)

6.400 in(162.6 mm) 5.770 in(146.6 mm)

043168976343

NOTES

Caution

- 4-Pin lamp minimum starting temperature is a function of the ballast. Most ballasts are rated with a minimum starting temperature of 50 degrees F (10 C). Ballasts are also available that provide reliable starting to 0 degrees F (-18C) and -20 F (-29C).

Energy

· Amalgam product experience stable brightness over a wider temperature range and in various operating positions.

Based on 60Hz reference circuit.

CAUTIONS & WARNINGS

• Fluorescent lamp lumens decline during life

Apr 4, 2011 8:12:04 PM For additional information, visit www.gelighting.com

L05-Luminaire

Finish

Semi-gloss white reflector, door, and plates, yoke arms and celling trim, with black back back. Painted surfaces – 6 stage pretreatment and electrostatically applied hermoset powder coat.

Reflector – extruded high purity aluminum with clear anodized specular finish. All luminaire hardware – stainless steel.

Mounting: Mounting/trim frame installs from below finished ceiling. Retrofits into existing non-accessible ceilings. Spring clips provided for ceilings up to 1-3/4' (44mm) thick. Supplemental support weights and ending so to 1 required for accessible ceilings. Where wire suspension is prohibited, order accessible ceilings. Where wire suspension is use with 1/2" EMT, 1-1/2" lathing or C channel (by others).

Electrical: Use 90°C wire for supply connections: Tungsten halogen – DC baycnet lampholder in patented clamping suports for maximum heat dissipation. 5' (1,5m) wire leads in flexible conduit (included) exit back back for connector to finished oreling recommended). Ceramic metal halide – G12 lampholder for use with single ended lamp. Integral electronic HPF ballast offers improved voltage regulation and cofor stability. Automatic shurdh feature eliminates end-of-life lamp cycling. Splice compartment with supplied by others. For complete ballast specifications, see Accessories Section.

For complete ballast specifications, see Accessories Section. Standard: UL listed or CSA certified for damp locations.

Performance Two parabolic reflector sectons drive light to the bottom of the wall. An elliptical secton shields the lamp from normal veiwing angles and redirects its light to a parabola. Glare is minimized and asymmetry of the beam is maximized resulting in high beam efficiency and supenor surface uniformity.

To C	Order						Style 20
To fo	rm a Cat	alog Number			Project:		Type:
2	0.0-	- T	- 0 2 -		6 Voltage/Ballast		Accessories
1	2	3 4	5 6	78	Tungsten Halogen A = 120V	<i>Metal Halide Electronic</i> 1 = 120V	Order separately. See Accessories Section for specification
1 So	urce					2 = 277V	ASRBKT00 = Universal mounting brackets (set of two), accepts 1/2" EMT.
= Ma = Tu	etal halide Ingsten ha	logen			7 Option (See Accessorie 00 = No options	s Section for specifications)	1-1/2 ¹ lathing, C channel or bar hangers (by others)
2 Sty 00 = Sr (ir	/le nall semi-r ntegral ba	ecessed adjustab Ilast for ceramic m	le letal halide)	OC = Style T200 modified to comply with OY = Style T200 (halogen) modified to c City code (Style M200 integral cor modification) V0 = Cutoff visor (recommended when r uichthing)		infied to comply with New York egral comply with New York egral complies as is without ed when wall mounted for	$\begin{array}{l} \text{AFK000X} \fbox{$=$ Ballast fuse kit} \\ \dot{\textbf{b}} = U.S. \\ \textbf{J} = Canada \\ \end{array}$
3 La	mp				XX = For modification not listed Consult factory prior to specific to speci	 include detailed description. 	
Lamp Code	Wattage	Lamp Number	Voltage(s)	Ballast	8 Destination Requi	rement	
Cerami	o Metal Ha	lide*	====		0 = UL listed or CSA certified	for U.S.	
020G	20	CDM20/T6/830	1, 2	Electronic	J = UL listed or CSA certified	for Canada	
035G	35	CDM35/T6/830	1,2	Electronic			
0100	100 too		Δ		Example		
0150	150	Q150DC	Â	1	M200 - 035G -	T - 02 - 1 - 000	
Metal ha than larr color co life (±20	alide lamps ips with qua nsistency a OK). Standa ounting	using ceramic arc tu artz arc tubes. They o nd a more stable col ard lamp color is 300	bes yield highe offer improved or temperature 0K/80+ CRI.	er light output lamp-to-lamp over their	metal halide lamp. Overlapping Integral 120V electronic ballast. U.S.	ceiling trim. Semi-gloss white. UL listed or CSA certified for	
= 0	venapping	uun .					

5/10

elliptipar (

elliptipar from The Lighting Quotient 114 Boston Post Road, West Haven, Connecticut 06516, USA Voice 203.931.4455 • Fax 203.931.4464 • thelightingquotient.com

Certain products illustrated may be covered by applicable patents and patents pend-ing. These specifications supersede all prior publications and are subject to change without notice. Copyright © 2010 Sylvan R. Shemitz Designs, Inc., all rights reserved.

L05-Lamp

GE Lighting

20016 - CMH70TU/830/G12

GE ConstantColor® PulseArc® CMH® Ceramic Metal Halide T6

Photo Not Available

CAUTIONS & WARNINGS

CAUTIONS & WARNINGS R- WARNING: This lamp can cause serious skin bum and eye inflammation from shortwave ultraviolet radiation if outer envelope of the lamp is broken or punctured, and the arc tube continues to operate. Do not use where people will remain for more than a few minutes unless adequate shielding or other safety precautions are used. Certain types of lamps that will automatically extinguish when the outer envelope is broken or punctured are commercially available. Visit the FDA website for more information: http://www.fda.gov/cdrhr/adhealth/products/ urburns.html minutes unless adequate shielding or other safety precautions are used. Certain types of lamps that will automatically extinguish when the outer envelope is broken or punctured are commercially available. Visit the FDA website for more information: http://www.fda.gov/cdrh/radhealth/products/urburns.html

Caution

Warning

GENERAL CHARACTERISTICS

Lamp Type Bulb Base Rated Life Bulb Material Lamp Enclosure Type (LET) LEED-EB MR Credit

Additional Info

High Intensity Discharge -Ceramic Metal Halide Т6 Bi-Pin (G12) 15000 hrs Quartz Enclosed fixtures only 65 picograms Hg per mean lumen hour UV control

PHOTOMETRIC CHARACTERISTICS

Initial Lumens 6200 4700 Mean Lumens Nominal Initial Lumens per Watt 88 Color Temperature Color Rendering Index (CRI)

ELECTRICAL CHARACTERISTICS

Wattage Burn Position Warm Up Time to 90% (MAX) Hot Restart Time to 90% (MIN) Hot Restart Time to 90% (MAX)

DIMENSIONS Maximum Overall Length

(MOL) Light Center Length (LCL)

PRODUCT INFORMATION

Product Code Description ANSI Code Standard Package Standard Package GTIN Standard Package Quantity Sales Unit No Of Items Per Sales Unit No Of Items Per Standard Package UPC

Universal burning position 2 min 10 min 15 min

3.5600 in(90.4 mm)

3000 K

83

70

2.180 in(55.4 mm)

20016 CMH70TU/830/G12 C139/M139 Case 10043168200162 12 Unit 12

043168200165

Apr 4, 2011 7:55:43 PM For additional information, visit www.gelighting.com

L06- Luminaire

Recessed wall luminaires · unshielded for wall and steps

Housing: Constructed of die-cast and extruded aluminum with integral wiring compartment. Mounting tabs provided.

Enclosure: One piece die-cast aluminum faceplate. 1/3" thick, clear tempered glass with translucent white ceramic coating. Faceplate is secured by two (2) socket head, stainless steel, captive screws threaded into stainless steel inserts in the housing casting. Continuous high temperature O-ring gasket for weather tight operation.

Electrical: (Fluorescent) Lampholder; type G23 (9W), rated 75W, 250V. Ballasts are magnetic, available 120V or 277V-specify. Through Wiring: All units are suitable for a maximum of four (4) No. 12 AWG conductors (plus ground) suitable for 75°C. Provided with two 1/2" NPT threaded conduit entries.

Finish: Available in four standard BEGA colors: Black (BLK); White (WHT); Bronze (BR2); Silver (SLV). To specify, add appropriate suffix to catalog number. Custom colors supplied on special order.

UL listed, suitable for wet locations and for installation within 3 feet of ground. Suitable for all types of construction including poured concrete. Protection class: IP64. Type: BEGA Product: Project: Voltage: Color: Options: Modified:

BEGA-US 1000 BEGA Way, Carpinteria, CA 93013 (805) 684-0533 FAX (805) 566-9474 www.bega-us.com @copyright BEGA-US 2010 Updated 5/10

L06-Lamp

GE Lighting

Savings

97558 - F9BX/827/ECO

GE Ecolux® Biax® T4 - Facilities; Retail Display; Hospitality; Office; Restaurant; Warehouse

Photo

Not Available

High Color Rendering

Bulb

GENERAL CHARACTERISTICS

Base Equivalent Wattage Rated Life Starting Temperature Cathode Resistance LEED-EB MR Credit

Additional Info Primary Application

Lamp Type

Compact Fluorescent - Plug-In T4 G23 10000 W 10000 hrs -18 °C (-0 °F) 11.1 Ohm 800 picograms Hg per mean lumen hour TCLP compliant Facilities;Retail Display;Hospitality;Office;Restaurant;Wi

PHOTOMETRIC CHARACTERISTICS

 Initial Lumens
 66.66667 /600 /600

 Mean Lumens
 500

 Nominal Initial Lumens per Watt
 66

 Color Temperature
 2700 K

 Color Rendering Index (CRI)
 82

ELECTRICAL CHARACTERISTICS

 Amps
 60 A

 Wattage
 9

 Voltage
 120

 Open Circuit Voltage Across
 198 V

 Starter
 120

 Lamp Current
 0.18 A

 Current Crest Factor
 1.7

 Supply Current Frequency
 60 Hz

DIMENSIONS

Energy

Maximum Overall Length (MOL) Nominal Length Base Face to Top of Lamp

PRODUCT INFORMATION

Product Code
Description
ANSI Code
Standard Package
Standard Package GTIN
Standard Package Quantity
Sales Unit
No Of Items Per Sales Unit
No Of Items Per Standard
Package
UPC

6.600 in(167.6 mm) 5.670 in(144.0 mm)

6.5900 in(167.4 mm)

97558 F9BX/827/E

F9BX/827/ECO 60901-IEC-0009-1 BUNDLE

043168975582

For additional information, visit www.gelighting.com

CAUTIONS & WARNINGS Caution

GRAPHS & CHARTS Spectral Power Distribution

NOTES Based on 60Hz reference circuit. Fluorescent lamp lumens decline during life

Apr 5, 2011 8:41:13 PM For additional information, visit www.gelighting.com
Appendix D

Electrical equipment manufacturer information is provided in the following order:

Panelboard- Pow-R-Line

Photovoltaic Mounting System- Unirac SolarMount-I

Photovoltaic Solar Module- Sharp NU-U235P1

Photovoltaic Inverter- IGPlus

Photovoltaic Inverter- SBUS

Photovoltaic Inverter- PSDL

Photovoltaic Inverter- PS3000

Photovoltaic Inverter- ELM2 LED

Panelboard-Pow-R-Line

Pow-R-Line Fusible panelboards

Pow-R-Line 1aF and Pow-R-Line 2aF fusible panelboards

Eaton's Cutler-Hammer[®] Pow-R-Line 1aF (PRL1aF) and Pow-R-Line 2aF (PRL2aF) lighting panelboards are designed principally for selectively coordinated system applications where high fault current levels are present.

Easy Access to CC Fuse from Deadfront

Pow-R-Line 1aF and 2aF

Selective coordination is mandated by the National Electrical Code® (NEC®) in Articles 700.27 (Emergency Systems), 701.18 (Legally Required Standby Systems) and 708.54 (Critical Operations Power Systems).

Coordination is defined by the NEC as the localization of an overcurrent condition to restrict outages to the circuit or equipment affected, accomplished by the choice of overcurrent protective devices and their ratings or settings.

In order to achieve high fault current ratings, the PRL1aF and PRL2aF panelboards incorporate "Class CC" fuses for branch circuit protection. When applied with the appropriate upstream fuses, selective coordination ratings may be achieved for available fault currents at the panel of up to 200,000 AIC.

The fuses are coupled with breakers on the line side of the fuse. The fuse is enclosed in a fuse holder that is factory connected from the line-side breaker. Both the fuse holder and the breaker disconnect handle are accessible from the panelboard deadfront, as on any typical lighting panel.

Standard features

- Neutral bar
- Complete assembly (box, trim and chassis are shipped together)
- All circuits include factory-installed breaker and fuse holder
- 28"-wide enclosures
- Neon fuse status indicator

Optional features

- Copper bus
- · Copper neutral
- Copper ground bar
- Branch "Class CC" fuses factory installed (factory-selected fuse manufacturer only)

Specifications

Listing:	UL® 67 chassis, UL 50 enclosure
Voltages:	120/240 Vac, single-phase, three-wire
	208Y/120 Vac, three-phase, four-wire
	480Y/277 Vac, three-phase, four-wire
Circuits:	12-, 18-, 24-, 30- and 42-circui chassis
Bus ratings:	100A, 225A and 400A
Bus material:	Aluminum (standard) Copper (optional
Branch circuit amperages:	0.2A–30A with

the appropriate Class CC fuse Short circuit

current ratings: Up to 200 kAIC

Selection recommendations

Proper selection of upstream main and feeder overcurrent devices is critical. Systems requiring selective coordination should be carefully designed. Overcurrent devices should be selected by professionals based on the characteristics of each overcurrent device at the appropriate fault current at the panel and by location.

For proper selection of the branch fuse, consult the specific fuse manufacturer's information with respect to selective coordination. Selection of the correct combination of overcurrent devices is essential for selective coordination. Fuses throughout the distribution system must be from the same manufacturer for both the initial installation and all replacement fuses in the future, as fuse characteristics vary from manufacturer to manufacturer.

These choices should be confirmed by a licensed professional engineer to ensure compliance with selective coordination mandates.

Both the Pow-R-Line 1aF and Pow-R-Line 2aF are enclosed in 28"-wide enclosures. The oversized boxes allow ample wiring room for field electricians to connect branch load conductors.

Other considerations

There are other factors, such as elevator distribution systems, that should also be addressed. Regardless of whether the electrical distribution system or part of the electrical distribution system requires selective coordination, any elevator within a facility is required to be selectively coordinated. Several different codes, including NFPA 70 (National Electrical Code), NFPA 72 (National Fire Alarm Code), ANSI/ASME A17.1 (Safety Code for Elevators and Escalators) and NFPA 13 (Installation of Sprinkler Systems), determine electrical system requirements for elevators. A combination of all four codes typically applies for every installation.

Eaton provides two different offerings to achieve compliance with these codes. The elevator control switch is offered for individual elevator feeds. The elevator control panelboard is offered for elevator banks where several elevators are fed from a central location. For more information on these products, please consult our Web site at www.eaton.com. The PRL1aF and PRL2aF may also be used for other critical power loads. These include loads such as UPS and inverter applications.

Beyond selective coordination

In applications where there is a need for circuit limitation below 15A (the minimum overcurrent device allowed by UL® 67), the PRL1aF and PRL2aF are an ideal solution. This is accomplished with the upstream Cutler-Hammer breaker immediately ahead of the fuse, conforming to the UL standard. The fuse on the load side of the breaker can be selected with lower ratings than the upstream breaker disconnect for that circuit.

These applications include test facilities and other applications where customers require overcurrent devices below 15A. Typically, for these applications, the fuse device is placed in another enclosure. Class CC fuse offerings provide amperage ratings down to 0.2A.

Tell me more

The Pow-R-Line 1aF and Pow-R-Line 2aF are available exclusively from Eaton's Satellite operations. Call or visit your local Satellite plant or see us on the Web at www.eaton.com.

28"-Wide Boxes Ensure Ample Wiring Space

Eaton Corporation Electrical Group 1000 Cherrington Parkway Moon Township, PA 15108 United States 877-ETN-CARE (877-386-2273) Eaton.com

© 2009 Eaton Corporation All Rights Reserved Printed in USA Publication No. PA01417002E / Z8498 May 2009

PowerChain Management is a registered trademark of Eaton Corporation.

All other trademarks are property of their respective owners.

Page 111

Photovoltaic Mounting System- Unirac SolarMount-I

SolarMount-ITM Technical Datasheets

SolarMount-I[™] Roof Mount Technical Datasheet

Pub 101109-1td V1.1 November 2010

SolarMount-I Module Connection Hardware	
Slider and Mid Clamp	1
Slider and End Clamp	2
SolarMount-I Series Accessory Mount	2
SolarMount-I Beam Connection Hardware	
1- Flange Foot	
2- Flange Foot	3
Beam Splice	4
SolarMount-I Beam	
SolarMount-I Beams	5
SolarMount-I Engineering Reports	
SolarMount-I 1.0 Beams	6
SolarMount-I 2.5 Beams	8

SolarMount-I Module Connection Hardware

SolarMount-I Series Slider with Mid Clamp Part No. 02027C, 02028C, 02029C, 02030C

- Slider and Mid Clamp Material: One of the following mill finished extruded aluminum alloys: 6005-T5, 6105-T5, 6061-T6 Ultimate Tensile: 38ksi, Yield: 35 ksi
- Slider Weight: 0.026 lbs (12g), Mid Clamp Weight: 0.050 lbs (23g)
- Allowable and design loads are valid when components are assembled with SolarMount-I Beams according to authorized UNIRAC documents
- Sliders are compatible with SolarMount-I Beams
- Assemble with one ¼-20 ASTM F593 bolt and one ¼-20 ASTM F594 servated flange nut
- Use anti-seize and tighten to 10 ft-lbs of torque
- Resistance factors and safety factors are determined according to part 1 section 9 of the 2005 Aluminum Design Manual

Applied Load Direction	Average Ultimate Ibs (N)	Allowable Load Ibs (N)	Safety Factor, FS	Design Load Ibs (N)	Resistance Factor, Φ
Sliding, X±	1194 (5311)	490 (2180)	2.44	741 (3296)	0.620
Tension, Y+	1503 (6686)	677 (3011)	2.22	1024 (4555)	0.682
Transverse, Z±	2080 (9252)	915 (4070)	2.27	1383 (6152)	0.665

Dimensions specified in inches unless noted

SolarMount-I[™] Technical Datasheets

SolarMount-I Module Connection Hardware

SolarMount-I Slider with End Clamp Part No. 02001C through 02006C, 02009C, 02010C

- Slider and End Clamp Material: One of the following mill finished extruded aluminum alloys: 6005-T5, 6105-T5, 6061-T6 Ultimate Tensile: 38 ksi, Yield: 35 ksi
- Slider Weight: 0.026 lbs (12g), end clamp weight varies based on height: ~0.058 lbs (26g)
- Allowable and design loads are valid when components are assembled with SolarMount-I 1.0 or 2.5 Beams according to authorized UNIRAC documents
- Sliders are compatible with SolarMount-I Beams
- Assemble with one ½-20 ASTM F593 bolt and one ½-20 ASTM F594 serrated flange nut
- Use anti-seize and tighten to 10 ft-lbs of torque
- Resistance factors and safety factors are determined according to part 1 section 9 of the 2005 Aluminum Design Manual
- Modules must be installed at least 1.5" from either end of a beam

Applied Load Direction	Average Ultimate Ibs (N)	Allowable Load Ibs (N)	Safety Factor, FS	Design Loads Ibs (N)	Resistance Factor, Φ
Sliding, X±	283 (1259)	104 (463)	2.72	157 (698)	0.555
Tension, Y+	332 (1477)	88 (391)	3.77	133 (592)	0.401
Transverse, Z ±	1367 (6081)	533 (2371)	2.56	806 (3585)	0.590

Dimensions specified in inches unless noted

SolarMount-I Accessory Mount Part No. 08010M

aluminum alloys: 6005-T5, 6105-T5, 6061-T6 Ultimate Tensile: 38 ksi, Yield: 35 ksi Slider Weight: 0.026 lbs (12g)

Slider Material: One of the following mill finished extruded

- Allowable and design loads are valid when components are assembled with SolarMount-1 1.0 or 2.5 Beams according to authorized UNIRAC documents
- SolarMount-I Series Accessory Mounts are compatible with SolarMount-I Beams
- Use two Accessory Mounts per accessory
- Assemble each pair of clamps with the following stainless steel hardware: two ¼-20 set screws, two ¼-20 heavy hex jam nuts, and two ¼-20 F594 serrated flange nuts
- Use anti-seize and tighten to 5-10 ft-lbs of torque

Resistance factors and safety factors are determined according calculations and UNIRAC testing

Maximum distance of accessory center of gravity from beam center in (mm)	Maximum weight of accessory Ibs (kg)
7 (178)	32 (14.5)

Dimensions specified in inches unless noted

2 Delivering Value through Innovation

Page 113

.

2

SolarMount-I[™] Technical Datasheets

SolarMount-I Beam Connection Hardware SolarMount-I 1 - Flange Foot Part No. 04011M

1-Flange Foot Material: One of the following mill finished extruded aluminum alloys: 6005-T5, 6105-T5, 6061-T6 Ultimate Tensile: 38 ksi, Yield: 35 ksi

1-Flange Foot Weight: 0.101 lbs (46 g)

- Allowable and design loads are valid when components are assembled with SolarMount-I 1.0 or 2.5 Beams according to authorized UNIRAC documents
- 1-Flange feet are compatible with SolarMount-I Beams
- Resistance factors and safety factors are determined according to part 1 section 9 of the 2005 Aluminum Design Manual
- Design and allowable loads are for the beam to foot connection
- Be sure to check load limits for roof attachments and standoffs

Dimensions specified in inches unless noted

Applied Load Direction	Average Ultimate Ibs (N)	Allowable Load Ibs (N)	Safety Factor, FS	Design Load Ibs (N)	Resistance Factor, Ø	
Tension, Y+	~ .		n			
SolarMount-I1.0 Beam	1388 (5952)	591 (2629)	2.26	894 (3977)	0.668	
SolarMount-I2.5 Beam	1514 (6735)	648 (2882)	2.34	980 (4359)	0.647	
Compression, Y-	~					
SolarMount-I1.0 Beam	2931 (13038)	1288 (5729)	2.28	1948 (8665)	0.664	
SolarMount-I2.5 Beam	2750 (12233)	1223 (5440)	2.25	1849 (8225)	0.672	
Transverse, X-, downhill	635 (2825)	313 (1392)	2.03	473 (2104)	0.745	
Transverse, X+, uphill	42 (187)	20 (89)	2.15	30 (1 33)	0.705	
Sliding, Z±	(see Beam Splice)					

SolarMount-I 2 - Flange Foot Part No. 04002M 04003M

2X 00.266 x 0.516 SLOT-

2.291

3.540

Dimensions specified in inches un

-X

0.625

- 2-Flange Foot Material: One of the following mill finished extruded aluminum alloys: 6005-T5, 6105-T5, 6061-T6 Ultimate Tensile: 38 ksi, Yield: 35 ksi
- 2-Flange Foot Weight: 0.103 lbs (47 g)
- Allowable and design loads are valid when components are assembled with SolarMount-I 1.0 or 2.5 Beams according to authorized UNIRAC documents
- 2-Flange Feet are compatible with SolarMount-I Beams
- Resistance factors and safety factors are determined according to part 1 section 9 of the 2005 Aluminum Design Manual

Resistance Factor, Ø

> 0.667 0.678

0.681

0.640

0.745 0.705

- Design and allowable loads are for the beam to foot connection
- Be sure to check load limits for roof attachments and standoffs ÷

Ý	Applied Load Direction	Average Ultimate Ibs (N)	Allowable Load Ibs (N)	Safety Factor, FS	Design Load Ibs (N)	
1	Tension, Y+			220		
1	SolarMount-I 1.0 Beam	1931 (8950)	864 (3843)	2.23	1307 (5814)	ĺ
/	SolarMount-I 2.5 Beam	2478 (11023)	1111 (4942)	2.23	1681 (7477)	ĺ
	Compression, Y-					
-	SolarMount-I 1.0 Beam	3788 (16850)	1706 (7589)	2.22	2581 (11 481)	ĺ
1	SolarMount-I 2.5 Beam	3694 (16432)	1562 (6948)	2.36	2363 (10511)	ĺ
less noted	Transverse, X-, downhill	635 (2825)	313 (1392)	2.03	473 (2104)	ĺ
	Transverse, X+, uphill	42 (187)	20 (89)	2.15	30 (133)	ĺ
	Sliding, Z±		(see	Beam Splic	eì	

3

٠

SolarMount-I[™] Technical Datasheets

SolarMount-I Beam Connection Hardware

SolarMount-I Beam Splice Part No. 03020M, 03021M

Beam Splice Material: Aluminum 5052-H32

- Ultimate Tensile: 31 ksi, Yield: 23 ksi Beam Splice Weight: 0.053 lbs (24 g) Allowable and design loads are valid when components are assembled according to authorized UNIRAC documents .
- Beam Splices are compatible with SolarMount-I Beams when used with 1-Flange or 2-Flange feet Resistance factors and safety factors are determined according to
- part 1 section 9 of the 2005 Aluminum Design Manual

Applied Load Direction	Average Ultimate Ibs (N)	Allowable Load Ibs (N)	Safety Factor, FS	Design Load Ibs (N)	Resistance Factor, Ø
Sliding, ±	1428 (6352)	620 (2758)	2.30	938 (4172)	0.657

Dimensions specified in inches unless noted

4

SolarMount-I™ Technical Datasheets

SolarMount-I Beam

MATERIAL: One of the following extruded aluminum alloys: 6005-T5, 6105-T5, or 6061-T6, Mill Finish					
Descondition	11-14-	Beam Height (in)			
Properties	Units	1.094	2.500		
Approximate Weight (per linear ft)	plf	0.356	0.548		
Total Cross Sectional Area	in²	0.3037	0.4665		
Section Modulus (X-Axis)	in³	0.1101	0.3687		
Section Modulus (Y-Axis)	in³	0.0390	0.0422		
Moment of Inertia (X-Axis)	in*	0.0602	0.4609		
Moment of Inertia (Y-Axis)	in*	0.0195	0.0211		
Radius of Gyration (X-Axis)	in	0.4453	0.9940		
Radius of Gyration (Y-Axis)	in	0.2536	0.2127		

Dimensions specified in inches unless noted

SolarMount-I[™] Technical Datasheets

(<u>)</u> UI	NIRAC Sola	rMount-I 1.0	Engineering	Report, Page	e 1 of 2
90 mph Win	d Chart		Max Snan (inches)		Uplift
<u>50 mpn win</u>	Ground Snow Point Loads (pounds): Up/				⊥ module
Module Size		20	30	40	Δ.
52" x 35"	56	52	48	44	
	229/ 262/ 54	211/305/96	197/ 327/ 123	177/ 364/ 140	
65" x 40"	49	44	41	37	1 and 1
	250/ 286/ 58	222/ 321/ 101	207/ 345/ 129	186/ 384/ 148	00
77" x 51"	40	35	33	30	Downforce
	238/ 273/ 56	212/ 307/ 96	198/ 329/ 123	178/ 366/ 141	⊥ _{module} "
	ind Chart				·
C	Ground Snow				Know your lin
Module Size	0	20	30	40	Check attachm
52" x 35"	49	48	45	42	load limits.
	305/ 323/ 47	295/ 334/ 88	277/ 356/ 113	261/ 377/ 136	
65" x 40"	41	40	38	36	
	321/340/49	311/ 352/ 92	292/ 375/ 119	275/ 397/ 143	
77" x 51"	33	32	30	29	
	306/ 325/ 47	297/ 336/ 88	278/ 358/ 113	263/379/136	
<u>120 mph Wi</u>	ind Chart				
Module Size		20	30	40	
52" x 35"	45	45	42	40	
	337/ 350/ 43	334/ 353/ 83	315/ 374/ 107	299/ 394/ 130	
65" x 40"	38	38	36	34	
Rear Contractor	355/ 369/ 45	352/ 372/ 87	332/ 394/ 113	315/ 415/ 137	
77" x 51"	31	30	29	27	
	339/ 352/ 43	336/ 355/ 83	317/ 376/ 108	301/ 396/ 130	
<u></u>	ind Chart				
C	Ground Snow				
Module Size	0	20	30	40	
52" x 35"	37	37	37	35	
	432/ 427/ 35	432/ 427/ 68	432/ 432/ 93	415/ 449/ 114	
65" x 40"	31	31	31	30	
_	455/ 450/ 37	455/ 450/ 71	455/ 455/ 98	438/ 473/ 120	
77" x 51"	25	25	25	24	
	434/ 429/ 35	434/ 429/ 68	434/ 434/ 93	418/ 452/ 114	
Installation of pr • Flush roof inst • The building h • The roof has a	roducts related to this allations only; module as either a flat roof, a	engineering report is sues must be < 10" from rogable roof \leq 45°, or a h	ubject to the requiremen oof surface ip roof ≤ 27°	nts below:	
Installation mu	ist have at least 4 mo	- dules grouped together	(minimum 50 ft ²)		
Surrounding g	round area must not s	slope more then 10 deg	rees		
 Location must 	fall into Wind Exposu	re Category B or C			
Building height	t must be less than or	equal to 30 feet			
Max captile or	= 1/3 May Shan	opan			
Ground snow	loads are adjusted for	roof slope and temper:	ature based on ASCF 7	-05	
Long edge of r	nodule must be perpe	endicular to the beam			
The installer m	ust comply with the re	esponsibilities and instr	uctions described in the	install manual	
 The installer m 	nust confirm that the m	nethod of attachment (c	omponents and hardwa	are) and	
structure can	handle the gi∨en poin	t loads			
 In regions with must be great 	er than the borizontal	ess than 20 pst but not : distance from eave to :	zero, the root angle in c idge / 50	legrees	
musi be great	and including module	a and mounting bordu	ruge / JU	and 2 E not	

System dead load, including mod s and mounting hardware, must be between 2 and 3.5 psf.

• Importance factors are equal to 1.0 in all cases.

· Unbalanced and drift snow loads have not been considered.

• Installations must be in seismic site class A, B, C, or D • Spectral response acceleration, S_S, is \leq 1.5 (and \leq 0.35 if snow loads are \geq 30 psf).

SolarMount-I[™] Technical Datasheets

🕥 u

UNIRAC SolarMount-I 1.0 Engineering Report, Page 2 of 2

Engineering Variables							
Description	Variable	Value	Units				
Building Height	h	30	ft				
Roof Pitch		0-45	degrees				
Wind Exposure Category		С					
Importance Factor	Ι	1					
Effective Wind Area		50+	ft2				
Topographic Factor	Kzt	1					
Roof Zone		1	(use 1/2 sp	an for zone	s 2 and 3)		
Design Wind Loads							
Basic Wind Speed (mph)			<u>90</u>	<u>110</u>	<u>120</u>	<u>150</u>	Ī
Max Design Wind Load, Pne	et; Uplift (psf)		-19.2	-28.7	-34.2	-53.3	
Max Design Wind Load, Pne	et; Downforce	e (psf)	17.5	26.0	31.1	48.4	
Dead, Snow, and Earthqua	ake Loads						
Dead Load; min/ max			2/3.5	psf			
Earthquake Load			2.8	psf			
Ground Snow Load, Pg, (po	unds/ ft2)		<u>0</u>	20	30	40	
Max Sloped roof snow load (psf)			0.0	20.0	25.2	33.6	
Max Distance between splices (inches feet)			653 54	336 28	245 20	193 16	

Distributed Loads for 65" x 40" module, pounds/ inch (smaller modules -20%, larger modules +18%)

	1				
	Ground Sn	ow Load (p	sf)		
Wind Load (mph)	<u>0</u>	20	<u>30</u>	40	
<u>90</u>	4.06	4.06	4.06	4.06	Uplift, [⊥] to module
Uplift	4.65	5.87	6.75	8.37	Downforce, ⊥to module
⊥ module	0.95	1.84	2.53	3.22	Side, // module
<u>110</u>	6.21	6.21	6.21	6.21	Uplift, [⊥] to module
	6.57	7.02	7.98	8.94	Downforce, ⊥to module
	0.95	1.84	2.53	3.22	Side, // module
120	7.44	7.44	7.44	7.44	Uplift, [⊥] to module
	7.71	7.88	8.83	9.79	Downforce, ⊥to module
Downforce Side	0.95	1.84	2.53	3.22	Side, // module
⊥ module // module <u>150</u>	11.77	11.77	11.77	11.77	Uplift, [⊥] to module
	11.63	11.63	11.77	12.73	Downforce, ⊥to module
⊥ : perpendicular/ normal	0.95	1.84	2.53	3.22	Side, // module
// : parallel					-

For installations that do not comply with the limitations on page 1, refer to www.unirac.com for an engineering design guide to manually calculate loads or contact your distributer.

The design is based on and in compliance with the following codes/standards:

1. 2003 International Building Code, by International Code Council, Inc., 2003.

2. 2006 International Building Code, by International Code Council, Inc., 2006.

3. <u>Aluminum Design Manual: Specifications and Guidelines for Aluminum Structures</u>, by The Aluminum Association, Washington, D.C., 2005.

4. 2007 California Building Code (CBC), based on the 2006 International Building Code, by International Code Council, Inc., 2006.

SolarMount-I[™] Technical Datasheets

🕥 U	NIRAC Sola	rMount-I 2.5	Engineering	Report, Pag	e 1 of 2
00 mph Min	d Chart		May Span (inchos	1	Uplift
<u>90 mpn wir</u>	Cround Show	Daint Laa	Max Span (incres	⊥ module	
Madula Siza		20			A
52" x 35"	76	67	57	40	
JZ X JJ	70	271/302/123	231/ 395/ 144	205/ 422/ 163	
65" x 40"	63	56	51	200/ 423/ 103	
05 1 40	210/ 365/ 75	284/ 410/ 120	259/ 430/ 161	220/ 473/ 192	
77" v 54"	50	204/410/125 AA	/1	223/4/3/102	Downforce
11	300/ 344/ 70	267/ 386/ 121	249/ 414/ 155	224/ 461/ 177	⊥ module Side
440 L W		2017 0007 121	210/111/100	22.0.100.111	// module
<u>110 mph W</u>	ind Chart				
M	Ground Show	00		10	Know your limits!
Module Size	0	20	30	40	Check attachment
52" X 35"	64	62	57	51	load limits.
0.011	399/ 423/ 61	386/ 43// 115	354/ 455/ 144	314/ 452/ 163	
65" x 40"	53	51	48	45	
770	410/ 434/ 63	397/ 449/ 118	372/ 479/ 152	351/ 505/ 182	
77" x 51"	42	41	38	36	
	386/ 409/ 59	373/422/111	350/ 450/ 143	331/4///1/2	
<u>120 mph W</u>	ind Chart Ground Snow				
Module Size	0	20	30	40	
52" x 35"	59	59	55	51	
	442/ 458/ 56	437/ 463/ 108	413/ 490/ 140	376/ 495/ 163	
65" x 40"	49	48	46	43	
	454/ 470/ 58	449/ 475/ 111	424/ 503/ 144	403/ 530/ 174	
77" x 51"	39	38	36	34	
	427/ 443/ 55	423/ 447/ 105	399/ 474/ 136	379/ 499/ 164	
<u>150 mph W</u>	<u>ind Chart</u> Ground Snow				
Module Size	0	20	30	40	
52" x 35"	48	48	48	46	
	566/ 559/ 46	566/ 559/ 89	565/ 566/ 122	544/ 588/ 149	
65" x 40"	40	40	39	38	
	581/ 574/ 47	581/ 574/ 91	581/ 581/ 125	559/ 604/ 153	
77" x 51"	31	31	31	30	
	547/ 540/ 44	547/ 540/ 86	547/ 547/ 118	526/ 569/ 144	
Installation of p • Flush roof inst • The building h • The roof has a	roducts related to this allations only; module as either a flat roof, a a minimum slope of 1.	engineering report is su s must be < 10" from ro gable roof ≤ 45°, or a h 2°	ubject to the requiremen oof surface iip roof ≤ 27°	nts below:	
 Installation mu 	ust ha∨e at least 4 mo	dules grouped together	(minimum 50 ft ²)		
 Surrounding g 	round area must not e	slope more then 10 deg	rees		
 Location must 	tall into Wind Exposu	re Category B or C			
 Building neight For roof zoner 	a must be less than or 2 and 3 use 1/2 May	Snan			
Max cantilevel	r = 1/3 Max Span	opan			
Ground snow	loads are adjusted for	roof slope and tempera	ature based on ASCE 7	-05	
Long edge of	module must be perpe	endicular to the beam			
 The installer n 	nust comply with the r	esponsibilities and instr	uctions described in the	e install manual	
 The installer n 	nust confirm that the n	nethod of attachment (c	omponents and hardwa	are) and	
structure can	handle the given poin	t loads		· · · · · · · · · · · · · · · · · · ·	
 In regions with 	n ground snow loads le	ess than 20 psf but not .	zero, the roof angle in o	aegrees	

must be greater than the horizontal distance from eave to ridge / 50

• System dead load, including modules and mounting hardware, must be between 2 and 3.5 psf.

• Importance factors are equal to 1.0 in all cases.

· Unbalanced and drift snow loads have not been considered.

• Installations must be in seismic site class A, B, C, or D • Spectral response acceleration, S_S, is \leq 1.5 (and \leq 0.35 if snow loads are \geq 30 psf).

SolarMount-I[™] Technical Datasheets

UNIRAC SolarMount-I 2.5 Engineering Report, Page 2 of 2

Engineering Variables							
Description	Variable	Value	Units				
Building Height	h	30	ft				
Roof Pitch		0-45	degrees				
Wind Exposure Category		С					
Importance Factor	Ι	1					
Effective Wind Area		50+	ft2				
Topographic Factor	Kzt	1					
Roof Zone		1	(use 1/2 sp	an for zone	s 2 and 3)		
Design Wind Loads							
Basic Wind Speed (mph)			<u>90</u>	<u>110</u>	<u>120</u>	<u>150</u>	
Max Design Wind Load, Pne	et; Uplift (psf)		-19.2	-28.7	-34.2	-53.3	
Max Design Wind Load, Pne	et; Downforce	e (psf)	17.5	26.0	31.1	48.4	
Dead, Snow, and Earthqua	ike Loads						
Dead Load; min/ max			2/3.5	psf			
Earthquake Load	2.8	psf					
Ground Snow Load, Pg, (pounds/ ft2)			<u>0</u>	<u>20</u>	<u>30</u>	<u>40</u>	
Max Sloped roof snow load (psf)			0.0	20.0	25.2	33.6	
Max Distance between splic	es (inches, fe	eet)	653, 54	336, 28	245, 20	193, 16	
			1.1				

Distributed Loads for 65" x 40" module, pounds/ inch (smaller modules -20%, larger modules +18%)

	Ground Sn	ow Load (p	sf)		
Wind Load (mph)	<u>0</u>	20	<u>30</u>	<u>40</u>	
90	4.06	4.06	4.06	4.06	Uplift, [⊥] to module
Uplift	4.65	5.87	6.75	8.37	Downforce, ⊥to module
⊥ module	0.95	1.84	2.53	3.22	Side, // module
<u>110</u>	6.21	6.21	6.21	6.21	Uplift, [⊥] to module
	6.57	7.02	7.98	8.94	Downforce, ⊥to module
	0.95	1.84	2.53	3.22	Side, // module
120	7.44	7.44	7.44	7.44	Uplift, [⊥] to module
	7.71	7.88	8.83	9.79	Downforce, ⊥to module
Downforce Side	0.95	1.84	2.53	3.22	Side, // module
⊥ module // module <u>150</u>	11.77	11.77	11.77	11.77	Uplift, [⊥] to module
9022 NO302002203029460 NO30	11.63	11.63	11.77	12.73	Downforce, ⊥to module
⊥ : perpendicular/ normal	0.95	1.84	2.53	3.22	Side, // module
// : parallel					-

For installations that do not comply with the limitations on page 1, refer to www.unirac.com for an engineering design guide to manually calculate loads or contact your distributer.

The design is based on and in compliance with the following codes/standards:

1. 2003 International Building Code, by International Code Council, Inc., 2003.

2. 2006 International Building Code, by International Code Council, Inc., 2006.

3. <u>Aluminum Design Manual: Specifications and Guidelines for Aluminum Structures</u>, by The Aluminum Association, Washington, D.C., 2005.

4. 2007 California Building Code (CBC), based on the 2006 International Building Code, by International Code Council, Inc., 2006.

Photovoltaic Solar Module- Sharp NU-U235P1

solar electricity

MULTI-PURPOSE MODULE NEC 2008 Compliant

NU-U235F1

MULTI-PURPOSE 235 WATT MODULE FROM THE WORLD'S TRUSTED SOURCE FOR SOLAR.

Using breakthrough technology, made possible by nearly 50 years of proprietary research and development, Sharp's NU-235F1 solar module incorporates an advanced surface texturing process to increase light absorption and improve efficiency. Common applications include commercial and residential grid-tied roof systems as well as ground mounted arrays. Designed to withstand rigorous operating conditions, this module offers high power output per square foot of solar array.

Sharp's most powerful commercial module manufactured today.

ENGINEERING EXCELLENCE

High module efficiency for an outstanding balance of size and weight to power and performance.

DURABLE

Tempered glass, EVA lamination and weatherproof backskin provide long-life and enhanced cell performance.

RELIABLE 25-year limited warranty on power output.

HIGH PERFORMANCE

This module uses an advanced surface texturing process to increase light absorption and improve efficiency.

INNOVATIVE

156 mm monocrystalline solar cells provide high power output. Ideal for large commercial rooftops where space is a premium.

The NU-U235F1 offers industry-leading performance for a variety of applications.

Improved Frame Technology

SHARP: THE NAME TO TRUST

When you choose Sharp, you get more than well-engineered products. You also get Sharp's proven reliability, outstanding customer service and the assurance of our 25-year limited warranty on power output. A global leader in solar electricity. Sharp powers more homes and businesses than any other solar manufacturer worldwide.

BECOME POWERFUL

NU-U235F1

NEC 2008 Compliant

Module output cables 12 AWG with locking connectors

ELECTRICAL CHARACTERISTICS	
Maximum Power (Pmax)*	235 W
Tolerance of Pmax	+10%/-5%
Type of Cell	Monocrystalline silicon
Cell Configuration	60 in series
Open Circuit Voltage (Voc)	37.0 V
Maximum Power Voltage (Vpm)	30.0 V
Short Circuit Current (Isc)	8.60 A
Maximum Power Current (Ipm)	7.84 A
Module Efficiency (%)	14.4%
Maximum System (DC) Voltage	600 V
Series Fuse Rating	15 A
NOCT	47.5°C
Temperature Coefficient (Pmax)	-0.485%/°C
Temperature Coefficient (Voc)	-0.351%/°C
Temperature Coefficient (Isc)	0.053%/°C

BACK VIEW

۵

(-)¹ (+)

н _____ 1.8″/46

G H I 3.9"/100 mm 37.7"/958.mm 43.3"/1100 mm

Contact Sharp for tolerance specifications

(10) Ø0.35%9 mm

в

64.6"/16

SIDE VIEW

E

D

79"/200 mm

E 14.4″/365 mm

+

E

*Measured at (STC) Standard Test Conditions: 25°C, 1 kW/m² insolation, AM 1.5

MECHANICAL CHARACTER	RISTICS
Dimensions (A x B x C below)	39.1" x 64.6" x 1.8"/994 x 1640 x 46 mm
Cable Length (I)	43.3"/1100 mm
Output Interconnect Cable**	12 AWG with MC4 Locking Connector
Weight	44.1 lbs / 20.0 kg
Max Load	50 psf (2400 Pascals)
Operating Temperature (cell)	-40 to 194°F / -40 to 90°C

**A safety lock clip (Multi Contact part number PV-SSH4) may be required in readily accessible locations per NEC 2008 690.33 (C)

QUALIFICATIONS

and a second		
UL Listed	UL 1703	
Fire Rating	Class C	CALAR

WARRANTY

25-year limited warranty on power output Contact Sharp for complete warranty information

Design and specifications are subject to change without notice. Sharp is a registared trademark of Sharp Corporation. All other trademarks are property of their respective owners. Contact Sharp to obtain the latest product manuals before using any Sharp device. Cover photo. Solar installation by SPG Solar.

SHARP ELECTRONICS CORPORATION 5901 Bolsa Avenue, Huntington Beach, CA 92647 1-800-SOLAR-06 • Email: sharpsolar@sharpusa.com www.sharpusa.com/solar

© 2009 Sharp Electronics Corporation. All rights reserved.

09F-040 + PC-06-09

DIMENSIONS

D

1

G

A 39.1°/994 mm

F 32.3''/820 mm

Photovoltaic Inverter- IGPlus

Fronius IG Plus PV Inverter

The first complete solution. Reliable. Proven. Smart.

An outstanding addition to the family: The next generation Fronius IG Plus inverter builds on a successful model with multiple enhancements, including maximum power harvest, a built-in six circuit string combiner, integrated, lookable DC Disconnect, significantly improved efficiency, and unbeatable reliability. New, larger power stages expand the proven Fronius IG family from 2 to 12 kW in a single inverter.

POWERING YOUR FUTURE

INPLIT DATA Francius IC Plus	3.0-1	3.8-1	5.0-1	60-1	75-1	10.0-1	11.4-1	11 4-3	12.0.3
Recommended PV-Power (Wp)	2500-3450	3200-4400	4250-5750	5100-6900	6350-8600	8500-11500	9700-13100	9700-13100	10200-13800
MPPT-Voltage Bange	2000 0100	0200 1100	1200 0100	0.000.0000	230 500 V	0000 11000	0100 10100	0.00.10100	10200 10000
DC Startup Voltage					245 V				
Max Input Voltage (at 1000 W/m ²					2101				
14°E (-10°C) in open circuit operation)					600 V				
Nominal Input Current	83A	10.5 A	13.8 A	16.6 A	20.7 A	276 A	31.4 A	31.4 A	33 1 A
Max. usable Input Current	14.0 A	17.8 A	23.4 A	28.1 A	35.1 A	46.7 A	53.3 A	53.3 A	56.1 A
Admissible conductor size (DC)	11.9 13	11.0 / (20.171	Lon A	No. 14 - 6 AWG	10.171	00.071	00.071	00.171
Number of DC Input Terminals					6				
Max. Current per DC Input Terminal			20) A; Bus bar av	ailable for high	er input curren	ts		
OUTPUT DATA Fronius IG Plus	3.0-1	3.8-1	5.0-1	6.0-1	7.5-1	10.0-1	11.4-1	11.4-3	12.0-3
Nominal output power (P.o)	3000 W	3800 W	5000 W	6000 W	7500 W	9995 W	11400 W	11400 W	12000 W
Max. continuous output power									
104°F (40°C) 208 V / 240 V / 277 V	3000 W	3800 W	5000 W	6000 W	7500 W	9995 W	11400 W	11400 W	12000 W
Nominal AC output voltage		000000000000000000	208	V / 240 V / 27	7 V	Addition of these		208 V / 240 V	277 V
Operating AC voltage range 208 V 183 - 229 V (-12 / +10 %)									
(default) 240 V				211	- 264 V (-12 / +1	0 %)			
977 V				244	- 305 V (-12 / ±1	0 %)			
Max continuous 208 V	14 A A	18.3 A	24 O A	28 8 A	3614	<u>481Δ</u>	54 8 A	316 4*	n a
output current 940.V	12.5 A	15.8 A	20.8 A	25.0 A	31.9 A	41.7 A	475A	97 / A*	na.
077 V	10.8 A	13.0 A	20.0 A	20.0 A	071A	41.7 A 36 1 A	47.0 A	27.4 A	11.4.A*
Admissible conductor size (AC)						APPER			
Autoristic contracts (Ko) Autoristic contrac									
Nominal output frequency					60 Hz				
Operating frequency range					59.3 - 60.5 Hz				
Total barmonic distortion					< 3 %				
Power factor					1				
GENERAL DATA Fronius IG Plus	3.0-1 _{UNI}	3.8-1 _{UNI}	5.0-1 _{UNI}	6.0-1 _{UNI}	7.5-1 _{UNI}	10.0-1 _{UNI}	11.4-1 UNI	11.4-3 _{Delta}	12.0-3 WYE277
Max. Efficiency					96.2 %				
CEC Efficiency 208 V	95.0 %	95.0 %	95.5 %	95.5 %	95.0 %	95.0 %	95.5 %	95.0 %	n.a.
240 V	95.5 %	95.5 %	95.5 %	96.0 %	95.5 %	95.5 %	96.0 %	95.5 %	n.a.
277 V	95.5 %	95.5 %	96.0 %	96.0 %	96.0 %	96.0 %	96.0 %	n.a.	96.0 %
Consumption in standby (night)					< 1 W				
Consumption during operation	8	W		15 W			22	W	
Cooling			Co	ontrolled force	d ventilation, va	ariable fan spe	ed		
Enclosure Type			1		NEMA 3R				
Unit Dimensions (W x H x D)	17.1 x 24.3	8 x 9.6 in.	17	.1 x 36.4 x 9.6	in.		17.1 x 48.	1 x 9.6 in.	
Power Stack Weight	31 lbs.	(14 kg)		57 lbs. (26 kg)		82 lbs. (37 kg)			
Wiring Compartment Weight	24 lbs.	(11 kg)		26 lbs. (12 kg)		26 lbs. (12 kg)			
Admissible ambient operating temperatu	ire			-4	122°F (-20 +	50°C)			
Compliance	UL 1741-2005	5, IEEE 1547-20	03, IEEE 1547.1	, ANSI/IEEE C®	2.41, FCC Part	15 A& B, NEC A	Article 690, C22	2. 2 No. 107.1-0	1 (Sept. 2001)
PROTECTION									
PROTECTION									
DEVICES Fronius IG Plus	3.0-1 _{UNI}	3.8-1 _{UNI}	5.0-1 _{UNI}	6.0-1 _{UNI}	7.5-1 _{UNI}	10.0-1 _{UNI}	11.4-1 _{UNI}	11.4-3 _{Delta}	12.0-3 WYE27
Ground fault protection		Internal GFDI	Ground Fault L	Detector/Interr	upter); in accor	dance with UL	1741-2005 and	I NEC Art. 690	
DC reverse polarity protection					Internal diode				
Islanding protection			Internal; in a	ccordance wit	h UL 1741-2008	5, IEEE 1547-20	03 and NEC		
Over temperature				Output pow	er derating / ad	ctive cooling			
Fronius USA LLC Solar Electronic Division 10421 Citation Drive, Suite 1100, Brighton, Michigan, 48116 E-Mail: by-us@fronius.com									

Photovoltaic Inverter- SBUS

SUNNY BOY 5000US / 6000US / 7000US / 8000US

SUNNY BOY 5000US/6000US/7000US/8000US

The best in their class

Our US series inverters utilize our proven technology and are designed specifically to meet IEEE-1547 requirements. Sunny Boy 6000US, Sunny Boy 7000US and Sunny Boy 8000US are also compatible with the Sunny Tower. Increased efficiency means better performance and shorter payback periods. All four models are field-configurable for positive ground systems making them more versatile than ever. Throughout the world, Sunny Boy is the benchmark for PV inverter performance and reliability.

Technical Data

	SB 5000US	SB 6000US	SB 7000US	SB 8000 US
Recommended Maximum PV Power [Module STC]	6250 W	7500 W	8750 W	10000 W
DC Maximum Voltage	600 V	600 V	600 V	600 V
Peak Power Tracking Voltage	250-480 V	250-480 V	250-480 V	300-480 V
DC Maximum Input Current	21 A	25 A	30 A	30 A
Number of Fused String Inputs	3 inverter , 4 x 20 A DC disconnect	3 inverter , 4 x 20 A DC disconnect	3 (inverter), 4 × 20 A [DC disconnect]	3 inverter , 4 x 20 A DC disconnect
PV Start Voltage	300 V	300 V	300 V	365 V
AC Nominal Power	5000 W	6000 W	7000 W	8000 W
AC Maximum Output Power	5000 W	6000 W	7000 W	8000 W
AC Maximum Output Current @ 208, 240, 277 V	24 A, 21 A, 18 A	29 A, 25 A, 22 A	34 A, 29 A, 25 A	N/A, 32 A, 29 A
AC NominalVoltage Bange	183 - 229 V @ 208 V 211 - 264 V @ 240 V 244 - 305 V @ 277 V	183 - 229 V @ 208 V 211 - 264 V @ 240 V 244 - 305 V @ 277 V	183 - 229 V @ 208 V 211 - 264 V @ 240 V 244 - 305 V @ 277 V	N/A © 208 V 211 - 264 V © 240 V 244 - 305 V © 277 V
AC Frequency: nominal / range	60 Hz / 59.3 - 60.5 Hz	60 Hz / 59.3 - 60.5 Hz	60 Hz / 59.3 - 60.5 Hz	60 Hz / 59.3 - 60.5 Hz
Power Factor Nominal	0.99	0.99	0.99	0.99
Peak Inverter Efficiency	96.8%	97.0%	97.1%	96.5%
CEC Weighted Efficiency	95.5% @ 208 V 95.5% @ 240 V 95.5% @ 277 V	95.5% @ 208 V 95.5% @ 240 V 96.0% @ 277 V	95.5% @ 208 V 96.0% @ 240 V 96.0% @ 277 V	N/A © 203 V 96.0% © 240 V 96.0% © 277 V
Dimensions: W × H × D in inches	18.4 × 24.1 × 9.5	18.4 x 24.1 x 9.5	18.4 × 24.1 × 9.5	18.4 × 24.1 × 9.5
Weight / Shipping Weight	141 lbs / 148 lbs	141 lbs / 148 lbs	141 lbs / 148 lbs	148 lbs / 162 lbs
Ambient Temperature Range	-13 to 113 °F	-13 to 113 °F	-13 to 11 3 °F	-13 to 11 3 °F
Power consumption at night	0.1 W	0.1 W	0.1 W	0.1 W
Topology	Low frequency transformer, true sinewaye	Low frequency transformer, true sinewaye	Low frequency transformer, true sinewaye	Low frequency transformer, 3 true sinewaye
Cooling Concept	OptiCool™, forced active cooling	OptiCool™, forced active cooling	OptiCool™, forced active cooling	OptiCool [™] , forced active cooling
Mounting location: index r / outdoor NEMA 3R	•/•	0/0	0/0	•/•
LCD Disp kay	•	•	•	•
Communication: RS485 / wireless	0/0	0/0	0/0	0/0
Warranty:10 years / 15 years / 20 years	●/0/0	●/0/0	●/0/0	•/0/0
Com phance: IEEE-929, IEEE-1547, UL 1741, UL 1998, FCC Part 15 A & B	•	•	•	•
Specifications for nominal conditions		Included	O Optional	
NOTE: US inverters ship with gray lids.				
Elficiency Curves		The staty and set in Proceedings of the staty of the staty of the staty of the stat	-	Ingreed of the area water the second and the second and the second and the and the second

Tel. +1 916 625 0870 Toll Free +1 888 4 SMA USA www.SMA-America.com

SMA America, LLC

Photovoltaic Inverter- PSDL

FEATURES INTENDED USE

Factory- or field-install inside or outside (field only) fluorescent fixture to operate lamp(s) at an initial output of 10% to 95% of rated lamp lumens, providing optimum, glare-free illumination for 90 minutes upon interruption of normal power.

CONSTRUCTION

Black, 20-gauge steel, permanently sealed housing. Dual-voltage input capability (120V or 277V). Polarized quick-connect light/switch assembly simplifies installation (not included on the PSDL1 2LP). Remote test plate with pilot light and test switch standard for PSDL1 2LP.

Patent-pending integrated test switch/pilot light that requires only one-hole drilling (PSDL3).

U.S. Patent No. (PSDL3) 6,522,147. PERFORMANCE

PERFURMANU

PSDL1 operates one two-pin 18W or 26W quad-tube compact fluorescent lamp. PSDL1 2LP operates two (2) two-pin (13-26W) quad-tube fluorescent lamps. PSDL2 operates one two-pin 7W, 9W, or 13W quad-tube compact fluorescent lamp. PSDL3 operates one or two four-pin twin-tube (9–13W), triple-tube (18–42W*), quad-tube (13–26W) or 2D compact fluorescent lamp(s). *42W triple-tube is one lamp only.

Low-glare, shadow-free illumination provides excellent visibility for safe building evacuation.

BATTERY

Sealed, maintenance-free, high-temperature nickel-cadmium battery. Ensures long life over a wide range of temperatures.

Polarized battery connector simplifies maintenance and prevents charger damage due to improper connection.

Pilot light and test switch provide visual and manual means of monitoring system operation.

Automatic battery recharge after 90-minute discharge.

ELECTRONIC

Constant-current series resistor-type charger.

High-efficiency push-pull inverter is the most effective method of converting DC power to AC power. It provides maximum light output, battery life and reliability. **INSTALLATION**

INSTALLATION

Unit can be remote mounted up to half the distance recommended by the ballast manufacturer or 50 feet, whichever is less.

Optional external mounting tray provides quick and flexible mounting means for most applications.

Unit wired into building circuit in two ways: on night light circuit (permanently energized) or on switchable circuit (unswitched circuit to the battery charger and switched circuit to the fixture ballast). Unit will strike *normally off* lamp.

LISTING

UL listed. Meets UL 924, NFPA 101 (current Life Safety Code), NEC and OSHA

ORDERING INFORMATION

For shortest lead times, configure product using **standard options (shown in bold).** Example: PSDL1

					Accessories -	
		-			Order as separate item.	
				ELA PSDMT	External mounting tray	
	Designation		Options	ELA RTS	Remote test plate with pilot light a	ind test switch
PSDL1	Bi-pin (18-26W) battery	2LP	Two-lamp operation (PSDL1 only)		(PSDL1 2LP only)	
PSDL2	pack Bi-pin (7-13W) battery pack	DL	UL listed for damp location ¹ 0° – 50° C (32° – 122° F)	ELA TSPLP	Remote or replacement test switc mounts up to 25' away from fixture	h/pilot light; e ¹
PSDL3	Four-pin (9-42W) battery pack	SD	Self-diagnostics ^{1,2}	ELA TSPLPSD	Remote or replacement test switc for self-diagnostics; mounts up to fixture ¹	h/pilot light 25' away from
NOTES:				PSSD	Field-installable self-diagnos	tics module ^{1,2}
Factory i sheet for	nstallation is available on most Lithonia details. Remotes can be mounted up to	fixtures. Co 25' away fr	onsult EL downlighting spec rom fixture.	ELA PSMKSD	Self-diagnostics mounting kit (museparately to install the PSSD on a	st be ordered a PSDL3 prod-
1 Only a	available on the PSDL3.				uct) ²	1
2 SD op	tion includes the PSSD module and the	ELA PSMK	SD mounting kit.			
Emerg	ency				Sheet #: PSDL	PSBP-190

Compact Fluorescent Battery Packs

illumination standards.

WARRANTY

Three-year total customer satisfaction warranty. (For complete details, see warranty sheet in Product Selection Guide.) PSDL3 includes a five-year total customer satisfaction warranty.

PSDL Compact Fluorescent Battery Packs

SPECIFICATIONS

BATTERY

Sealed Nickel-Cadmium Shelf

	Voltage	life1	life ¹	Maintenance	temperature ²
PSDL1 PSDL2	3.6	3 yrs.	10 yrs.	none ³	32-100°F (0-38°C)
PSDL3	6	3 yrs.	10 yrs.	none ³	32-100°F (0-38°C)

Emocrad

	Maximum
Volts	Amps
120	.275
277	.255
120	.27
277	.27
120	.27
	Volts 120 277 120 277 120 120

120 277

NU	IES.	
9	A	

1 At77°F (25°C).

Optimum ambient temperature range where unit will provide capacity for 90 minutes Higher and lower temperatures affect life and capacity. Consult factory for detailed information. 2

3 Periodic system status test recommended.

Lamp Compatibility & Emergency Output

Catalog Number	Lamp De- scription	Lamp Bas	e Philips	Osram/ Sylvania	GE	Initial Lumen Rating	Initial Lamp 1	Lumens Lamp 2
	Quad-Tube (2pin)	G23-4	"PLC Lamps" PL-C 13W/USA 10mm/13W	"Dulux D" CF13DD	"Double Biax" F13D BX23T4	OS-780 GE-810 PL-860	*	500
PSDL1/ PSDL2P	Super Compact 10mm Quad-Tube (2-pin)	G24d-2	"PLC Lamps" PL-C 18W 10mm/18W	"Dulux D" CF18DD	"Double Biax" F18DBXT4	OS & PL-1250 GE-1150	675	650
		G24d-3	"PLC Lamps" PL-C 26W 10mm/26W	"Dulux D" CF26DD	"DoubleBiax" F26DBXT4	OS & PL-1800 GE-1710	925	950
PSDL2		G23	"PL Lamps" PL -S7W	"Dulux S" CF7DS	"Biax" F7BX	OS & PL-4 00 GE- 400	350	*
	Compact Twin-Tube (2-pin)	G23	"PL Lamps" PL 9	"Dulux S" CF9DS	"Biax" F9BX	OS-580 GE-600	500	*
		GX23	"PL Lamps" PL13	"Dulux S" CF13DS	"Biax" F13BX	OS-800 GE-825	650	*
	Quad-Tuba (2pin)	GX23-2	"PLC Lamps" PL-C 13W/USA 10mm/13W	"Dulux D" CF13DD	"Double Biax" F13DBX23T4	OS-780 GE-810 PL-860	450	×
	Compact Twin-Tube (4-pin)	2G7	*	"Dulux S/E" CF9DS/E 9W	*	580	NA	NA
	2.2.12	2GX7	*	"Dulux S/E" CF13DS/E 13W	*	800	NA	NA
PSDL3 ²	Super Compact	GX24q-1	"PL Cluster" PL-C 13W/4P 13W	"Dulux D/E" CF13DD/E/8 13W	"Double Biax" F13DBX/4P	900	580	635
	Quad-Tube (4-pin)	GX24q-2	"PL Cluster" PL-C 18W/4P 18W	"Dulux D/E" CF18DD/E/8 18W	"Double Biax" F18DBX/4P	OS & PL-1250 GE-1150	675	750
		GX24q-3	"PL Cluster" PL-C 26W/4P 26W	"Dulux D/E" CF26D D/E/8 26W	"Double Biax" F26DBX/4P	OS & PL-1800 GE-1710	790	900
	Super Compact	GX24q-2	"PL Triple" PL-T 18W/4P 18W	"Dulux T/E" CF18DT/E/IN/8 18W	"Triple Biax" F18TBX/SPX	1200	595	615
		GX24q-3	"PL Triple" PL-T 26W/4P 26W	"Dulux T/E" CF26DT/E/IN/8 26W	"Triple Biax" F26TBX/SPX	1800	412	749
	Triple-Tube (4-pin)	GX24q-3	"PL Triple" PL-T 32W/4P 32W	"Dulux T/E" CF32DT/E/IN/8 32W	"Triple Biax" F32TBX/SPX	OS & PL-2400 GE-2200	657	1038
		GX24q-3	"PL Triple" PL-T 42W/4P 42W	"Dulux T/E" CF42DT/E/IN/8 42W	×	3200	948	NA

MOUNTING

25

All dimensions are inches (millimeters).

AC input

Watts

3.5 3.5

3.5

35

3.3

32

Cross section end view Length: 10-5/8 (270) Shipping weight: 2.14 lbs. (.90 kgs.)

PSDL3

Cross section end view Length: 17-1/8 (435) Shipping weight: 5.0 lbs. (2.3 kgs.)

Cross section end view Length: 12 (304) Shipping weight: 3.0 lbs. (1.4 kgs.)

NOTES:

LES: NA = Not available. When using the PSOL3 with 25-42W triple-tube lamps, the Triad/Universal ballast C242 UNV BE is recommended. Inconsistent operation and performance may be experienced with the Advance ballast ICF-2842-M2-LD and is therefore not recommended for use with PSDL3 product. 1 2

Sheet #: PSDL

© 1998-2010 Acuity Brands Lighting, Inc. All rights reserved. Rev. 5/5/10

Lithonia Lighting Emergency Systems Group One Lithonia Way, Convers, GA 30012 Phone: 800-334-8694 Fax: 770-981-8141 www.lithonia.com

ELECTRICAL

Ontimum

Photovoltaic Inverter-PS3000

APPLICATION GUIDE: PS3000

The PS3000 is Lithonia's full-lumen-output battery pack. The PS3000 operates most fluorescent lamps found in commercial facilities today. This application guide is designed to assist the specifier with details of the PS3000, such as remote mounting, lamp compatibility and typical spacing guidelines.

NEUTRAL

circuit (unswitched) or a switched circuit. The following diagrams show the wiring for both of these applications. The PS3000 always requires an unswitched power supply connection. Through this connection, the PS3000 monitors the power supply, detects any interruptions and maintains the power to the battery charger.

For the switched application, the AC ballast receives a switched power supply, and the PS3000 receives continuous power. If the power fails, the PS3000 will automatically turn the emergency lamps on, regardless of the status of the switch.

MOUNTING AND REMOTE APPLICATIONS

A large nickel-cadmium battery is used to produce 3000 lumens in the PS3000. Due to the larger housing, it cannot be mounted inside the ballast channel like some 300-lumen to 1100lumen battery packs. The PS3000 can be remote mounted or externally mounted to the top of the fixture housing as shown below.

APPLICATION GUIDE: PS3000

For remote mounting, Lithonia offers a mounting tray as an accessory (ELA PSDMT). This tray will mount to the T-bar grid in the plenum or to wood joists. The drawing below shows the PS3000 installed on the ELA PSDMT.

The distance allowed for remote mounting the PS3000 depends on the specifications of the AC ballast used in the fixture. The maximum distance for remote mounting the PS3000 is 50' or *half* the remote distance recommended by the AC ballast manufacturer — whichever is less. It should be noted that typical remote mounting recommendations for AC ballasts range from 0' to 20'. The drawing below summarizes this guideline.

If the PS3000 is mounted on the top of the fixture or remote mounted within 8' of the fixture, the pilot light and test switch can be located inside the fixture housing by simply drilling two 1/2" holes in the ballast channel cover and then attaching them to the cover. For parabolic fixtures, the pilot light and test switch are visible and accessible. For lensed fixtures, the pilot light can be extended so the indicator is close to the lens and visible from below the fixture. If a remote pilot light/test switch is desired or the PS3000 is remote mounted further than 8' from the fixture, the remote pilot light/test switch accessory (ELA RTS30) should be used. The ELA RTS30 must be mounted within 8' of the PS3000.

TANDEM WIRING — OPERATING TWO LAMPS The PS3000 can operate two 2'- 4' standard output lamps. The lamps can be in the same fixture or two separate fixtures. However, when operating two lamps in separate fixtures, the same AC ballast must be operating the two lamps and the wiring configuration must allow both lamps to have a common connection point. The PS3000 cannot power two lamps operating from two separate AC ballasts.

The maximum distance between fixtures for tandem wiring applications is the remote distance recommended by the AC ballast manufacturer. It should be noted that typical remote mounting recommendations for AC ballasts range from 0' to 20'. The drawing below shows a tandem wiring application.

2

APPLICATION GUIDE: PS3000

"NORMALLY OFF" EMERGENCY

FLUORESCENT SYSTEMS

Sometimes the aesthetics and functionality of a space require the use of incandescent or HID light sources rather than fluorescent. This is common for hotels, upscale restaurants and retail warehouse stores. However, these applications may still utilize "normally off" fluorescent fixtures for emergency lighting purposes. All Power Sentry products, including the PS3000, will start and operate both "normally on" and "normally off" fluorescent fixtures. An AC ballast is not needed to operate a "normally off" fixture.

SPACING EXAMPLES

The following chart shows examples of fixture spacing guidelines with the PS3000 designed to meet the light level requirements of the Life Safety Code. Currently, the Life Safety Code requires one footcandle *average* and 0.1 FC *minimum* along the path of egress, while some cities and local codes require one footcandle minimum. For a more detailed lighting calculation, please contact your Lithonia Lighting sales representative.

Corridor application*: 100' length, 8' width, 9' height Reflectances: 80/50/20, 6' path of egress, T8 lamp

2' x 2' lensed troffer spacing for 1 f.c. minimum: 39' 1 f.c. average and 0.1 f.c. minimum: 167' 2' x 2' parabolic spacing for 1 f.c. minimum: 31' 1 f.c. average and 0.1 f.c. minimum: 133'

Open office application*: 80' length, 80' width, 9' height Reflectances: 80/50/20, 6' path of egress, T8 lamp

2'x 4' lensed troffer spacing for 1 f.c. minimum: 29' 1 f.c. average and 0.1 f.c. minimum: 57' 2'x 4' parabolic spacing for 1 f.c. minimum: 30' 1 f.c. average and 0.1 f.c. minimum: 45' * These are intended to be guidelines. Results will vary if your application deviates from these dimensions and assumptions.

BALLAST COMPATIBILITY

The PS3000 is compatible with standard magnetic, energy-saving magnetic and electronic ballasts. It also is compatible with the various starting circuits, including rapid-start and instant-start (slimline) ballasts.

LAMP COMPATIBILITY -

ONE-LAMP OR TWO-LAMP OPERATION

If using 2', 3' or 4' fluorescent lamps (T8 or T12), the PS3000 can operate one lamp at 3000 lumens or two lamps at 1500 lumens each. If operating two T8 lamps, the "2T8" option must be specified. Energy-saving lamps (34-watt), high-lumen lamps (like the Ultralume) and T10 lamps are also compatible with the PS3000. For more details, see the chart below.

Lamp Type	Wattage	Compatibility
U-lamp T8	16-31	
24" - 48" T8	17-32	•
60"-96" T8	40-59	
Circline T9	20-40	
U-lamp T12	34-40	H •
24" - 48" T12	20-40	H •
60"-96" T12	50-75	
24"-48"T12HO	35-60	
60"-96"T12HO	70-110	
24"-48"T12 VHO	74-115	
60"-96"T12VHO	135-215	
12"-24" twin-tube		
(4-pin)	18-50	
Triple-tube(4-pin)	26-32	×.
 One-lamp emerger Two-lamp emerger "2T8" option requi 	icy operation f icy operation f ired for 2-lamp	or 1-4 lamp ballas or 2-4 lamp ballas emergency
operation	•	Contraction Contraction

APPLICATION GUIDE: PS3000

PS3000 Specification Guidelines

GENERAL

The fluorescent battery pack shall be of the Power Sentry family manufactured by Lithonia Emergency Systems. The battery pack shall be capable of operating one or two 2' - 4' fluorescent T8 - T12 lamps, one 2' - 4' fluorescent HO or VHO long compact fluorescent lamp or one 6' - 8' (T8 -T12) fluorescent lamp for 90 minutes. The unit shall be constructed to conform to the standards of the National Electrical Code, OSHA and the current Life Safety Code (NFPA 101). It shall be UL listed for installation on top of the fixture or in the plenum. The battery pack shall be made in the U.S.A.

CONSTRUCTION

The battery pack shall consist of one compact (2" $x 5-5/8" \times 15-3/8"$) housing constructed of 20gauge steel with a 24" length of flexible conduit. A pilot light and double-pole test switch assembly shall be provided as a visual and manual means of monitoring system operation. A remote test switch shall be available as an option and shall be capable of mounting up to 8' from the battery pack. An optional external mounting tray shall be available to provide quick and flexible mounting for the battery pack in various applications. The battery pack shall have the capability of mounting up to 50' from the lamp.

ELECTRONICS

The electronics shall consist of a constant current type battery charger designed to provide increased reliability and maximize battery life. The battery pack shall have AC reset. This allows battery connection before AC power is applied and prevents battery damage from deep discharge. The charging circuitry shall be capable of automatically recharging the battery. Dualinput voltage (120/277 VAC, 60 Hz) capability shall be standard. The inverter circuitry shall be of the highly-efficient push-pull type providing maximum light output during emergency operation.

BATTERY

A sealed, maintenance-free nickel-cadmium battery shall be included. The nickel-cadmium battery shall be of high-temperature design. The optimum operating temperature range for the nickel-cadmium battery shall be 32°F - 100°F, with a life expectancy of 10 years.

OPERATION

During normal operation, the AC power applied to the battery pack is regulated and controlled by the electronic circuitry to provide proper automatic charging of the battery. Upon loss of the normal utility power, the electronic circuitry will automatically operate one fluorescent lamp up to 3000 lumens of initial emergency light output. For two-lamp operation, the battery pack shall evenly divide the light output between the two lamps.

WARRANTY

The battery pack shall have a five-year total customer satisfaction warranty. The warranty shall include the electronics and the battery.

For additional information or questions about the PS3000, please contact your local Lithonia Lighting sales representative.

Form No. 680.143 e4 103.pm5 5/96

4

Type

Photovoltaic Inverter- ELM2 LED

FEATURES & SPECIFICATIONS

INTENDED USE — Provides a minimum of 90 minutes of illumination for the rated wattage upon loss of AC power. Ideal for applications requiring attractive unit equipment with quick installation. Certain airborne contaminants can diminish integrity of acrylic.

Click here for Acrylic Environmental Compatibility table, for suitable uses.

CONSTRUCTION — White, compact, low-profile contemporary design. Engineering-grade thermoplastic housing is impact-resistant, scratch-resistant and corresion-proof. UL94V-O flame rating. UV-stable resin resists discoloration from natural and man-made light sources.

 $Two LED \ lamp \ heads with \ 12 series - parallel \ white \ LED s each, \ provide \ red undant \ light \ sources to \ ensure \ emergency$ lighting performance. Expected LED lamp life up to 10 years.

Dual-voltage input capability (120/277V). Edge connector on printed circuit board ensures long-term durability. Low-profile, integrated test switch/pilot light. Easily visible bright red status indicator.

Unique track-and-swivel arrangement permits full range of direction of lamp head adjustment. Universal J-box mounting pattern. Tool-less access for maintenance. Flexible conduit entry provision on top of the unit.

Ceiling- or wall-mount standard.

ELECTRICAL — Current-limiting charger maximizes battery life and minimizes energy consumption. Provides low operating costs.

Short-drcuit protection — current-limiting charger drcuitry protects printed circuit board from shorts.

Thermal compensation adjusts charger output to provide optimum charge voltage relative to ambient temperature.

Regulated charge voltage maintains constant-charge voltage over a wide range of line voltages. Prevents over/ undercharging that shortens battery life and reduces capacity.

Filtered charger input minimizes charge voltage ripple and extends battery life.

AC/LVD reset allows battery connection before AC power is applied and prevents battery damage from deep discharge.

Single multi-color LED indicator to display two-state charging, test activation and three-state diagnostic test. Test switch provides manual activation of 30-second diagnostic testing for on-demand visual inspection. Selfdiagnostic testing for 30 seconds every 30 days, 30 minute every 180 days and 90 minutes annually. Diagnostic evaluation of LED light source, AC to DC transfer, charging and battery condition.

BATTERY: Sealed, maintenance-free nickel-cadmium battery delivers 90 minute capacity to emergency lamps. Two-state constant-current charge maximizes battery life and automatically recharges after battery discharge. Low-voltage disconnect prevents excessively deep discharge that can permanently damage the battery. Optional high-output battery available to power both local and optional LED remote lamp heads simultaneously.

LISTING — UL damp location listed standard (10-40°C). Meets UL 924, NFPA 101 (current Life Safety Code), NEC and OSHA illumination standards.

WARRANTY — Full fixture five-year warranty.

ORDERINGINFORMATION Lead times will vary depending on options selected. Consult with your sales representative.

ELM2			
Family	Lamp type	Housing	Options
ELM2	LED Two 1.5W/3.6V white LED	(blank) White B Black	H0 High-output ni-cad battery for 6W remote capacity SD Self-diagnostics N0M Meets Mexican standards ¹

Accessories: 2,3 Ord	er as separate catalog number.
ELA Q L0304	Single LED in door remote head, white
ELAT Q LO304	Twin LED in door remote head, white
ELA QWP L0304	Single LED weather-proof remote head, gray
ELAT QWP L0304	Twin LED weather-proof remote head, gray
ELA WG1	Wireguard, 15" W x 13-1/2" H x 6" D ⁴

EMERGENCY

Notes

1 Available in black or white. Consult factory for options.

Also available in black. Add "B" after ELA to order black finish. 2 Example: ELA B Q L0304.

- Only compatible with Quantum LED series. For use with self-diagnostics fixture, add SD to end of catalog number. Example: ELA QL0304 SD.
- 4 See spec sheet ELA-WG.

LED Lamp Head Ni-Cad Battery

111100-

Thermoplastic Emergency Light

ELM2 LED

Example: ELM2 LED

ELM2_LED

ELM2 LED QUANTUM® Thermoplastic Emergency Light

SPECIFICATIONS

ELECTRICAL Primary Circuit					
Rated LED Life ¹	Supply Voltage	Max Amps	Max Watts		
10	120	.04	1.44		
years	277	.03	1.44		

BATTERY

Voltage	Shelf life ²	Expected life ²	Maintenance ³	Optimum temperature4
3.6	3 years	7-9 yrs.	none	50-104ºF (10-40°C)

1 Based on continuous operation.

2 At 77°F (25°C).

3 All life safety equipment, including emergency lighting path of egress, must be maintained, serviced and tested in accordance with all National Fire Protection Association and local codes. Failure to perform the required maintenance, service or testing could jeopardize the safety of occupants and will void all warranties.

Optimum anthen temperature range where unit will provide capability of the optimum and the interview of the optimum and t

REMOTE OUTPUT CAPACITY

	Unit\	
Standard	high-output	
unit	battery (HO)	
NA	6W	

Mounting Plate

QUANTUM LED SERIES – SINGLE COVERAGE 3W Total White LEDs Using a single unit at a typical 7.5' mounting height delivers an average illumance of 1.0 FC over a distance of 24' on a 3' path of egress and 18' on a 6' path of egress.

QUANTUM LED SERIES – MULTIPLE COVERAGE 3W Total White LEDs Using multiple units at a typical 7.5 mounting height delivers 25 center-to-center spacing on a 3' path of egress and 20' center-to-center spacing on a 6' path of egress.

Example of multiple ELM2 LED units illuminating a 3° path of eqress

www.lithonia.com

Example of multiple ELM2 LED units illuminating a 6' path of egress

EXTENDED RUN-TIME FOR HIGH-OUTPUT UNITS

Product ELM2 LED H0 (no remotes) Run time 3.9 hours Meets Life Safety Code standard mirimum illuminance of 0.1 FC and average illuminance of 1.0 FC Assumes open space with no obstructions, mounting height: 7.5; ceiling height 9; and reflectances: 80/50/20. Analysis based on independently tested photometrics.

EMERGENCY: One Lithonia Way Conyers, GA 30012 Phone: 800.334.8694 Fax: 770-981-8141

ELM2_LED

©2002-2010 Acuity Brands Lighting, Inc. All rights reserved. Rev. 11/5/10